Advertisement

Aktuelle Messverfahren zur objektiven Erfassung körperlicher Aktivitäten unter besonderer Berücksichtigung der Schrittzahlmessung

  • D. Rosenbaum
Leitthema

Zusammenfassung

Es ist das Ziel des vorliegenden Beitrags, einen Einblick in die quantitative Erfassung körperlicher Aktivität unter Alltagsbedingungen zu geben und die hierfür eingesetzten oder zu Verfügung stehenden aktuellen Messverfahren aufzuzeigen. Nach einer Einführung zur Bedeutung körperlicher Aktivitäten bei epidemieartig zunehmenden Problemen durch eine verhängnisvolle Kombination aus schlechter Ernährung und steigender Bewegungsarmut werden die verschiedenen Messmethoden kategorisiert dargestellt. Damit soll ein umfassender Überblick über die Einsatzmöglichkeiten dieser Produkte gegeben werden, um dem Leser eine Informationsbasis zu bieten, auf der er eine fundierte Entscheidung über den Einsatz des für eine spezielle Fragestellung geeigneten Messsystems treffen kann.

Schlüsselwörter

Körperliche Aktivität Alltagsaktivitäten Objektive Messverfahren Messtechnik Schrittzahlmessung 

Objective measurement tools for the assessment of physical activity

Abstract

The aim of the present study was to provide an overview about the various measurement options for the quantitative assessment of physical activity in daily life. After briefly discussing the importance of physical activity in this era of civilization-related health problems characterized by increasing malnutrition problems in combination with increasing lack of movement in daily life, the different types of measurement systems available and their applicability are described. It is hoped that this information will assist the potential user or buyer of a new measurement system to make a well-informed decision about the appropriate tool for a specific research interest.

Keywords

Physical activity assessment Activities of daily life Objective measurements Measurement technology Step counting 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359PubMedCrossRefGoogle Scholar
  2. 2.
    Tudor-Locke C, Johnson WD, Katzmarzyk PT (2009) Accelerometer-determined steps per day in US adults. Med Sci Sports Exerc 41:1384–1391PubMedCrossRefGoogle Scholar
  3. 3.
    Tudor-Locke C, McClain JJ, Hart TL et al (2009) Pedometry methods for assessing free-living youth. Res Q Exerc Sport 80:175–184PubMedGoogle Scholar
  4. 4.
    Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M (2008) Revisiting „how many steps are enough?“. Med Sci Sports Exerc 40:537–543CrossRefGoogle Scholar
  5. 5.
    Tudor-Locke C, Basset DRJ (2004) How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med 34:1–8PubMedCrossRefGoogle Scholar
  6. 6.
    Marshall SJ, Levy SS, Tudor-Locke CE et al (2009) Translating physical activity recommendations into a pedometer-based step goal: 3000 steps in 30 min. Am J Prev Med 36:410–415PubMedCrossRefGoogle Scholar
  7. 7.
    Tudor-Locke C, Sisson SB, Collova T et al (2005) Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol 30:666–676PubMedCrossRefGoogle Scholar
  8. 8.
    Tudor-Locke C, Leonardi C, Johnson WD et al (2011) Accelerometer steps/day translation of moderate-to-vigorous activity. Prev Med 53:31–33PubMedCrossRefGoogle Scholar
  9. 9.
    Lampert T, Mensink GB, Romahn N, Woll A (2007) Physical activity among children and adolescents in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50:634–642CrossRefGoogle Scholar
  10. 10.
    Kurth BM, Schaffrath Rosario A (2007) The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50:736–743CrossRefGoogle Scholar
  11. 11.
    Capio CM, Sit CH, Abernethy B, Rotor ER (2010) Physical activity measurement instruments for children with cerebral palsy: a systematic review. Dev Med Child Neurol 52:908–916PubMedCrossRefGoogle Scholar
  12. 12.
    Sirard JR, Pate RR (2001) Physical activity assessment in children and adolescents. Sports Med 31:439–454PubMedCrossRefGoogle Scholar
  13. 13.
    Müller C, Winter C, Rosenbaum D (2010) Aktuelle objektive Messverfahren zur Erfassung körperlicher Aktivität im Vergleich zu subjektiven Messmethoden. Dtsch Z Sportmed 61:11–18Google Scholar
  14. 14.
    Busse ME, Pearson OR, Van Deursen R, Wiles CM (2004) Quantified measurement of activity provides insight into motor function and recovery in neurological disease. J Neurol Neurosurg Psychiatry 75:884–888PubMedCrossRefGoogle Scholar
  15. 15.
    Chen KY, Bassett DR Jr (2005) The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 37:490–500CrossRefGoogle Scholar
  16. 16.
    Welk GJ (2005) Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc 37:501–511CrossRefGoogle Scholar
  17. 17.
    Schmitz KH, Treuth M, Hannan P et al (2005) Predicting energy expenditure from accelerometry counts in adolescent girls. Med Sci Sports Exerc 37:155–161PubMedCrossRefGoogle Scholar
  18. 18.
    Brandes M, Rosenbaum D (2004) Correlations between the step activity monitor and the DynaPort ADL-monitor. Clin Biomech (Bristol, Avon) 19:91–94Google Scholar
  19. 19.
    Uhlenbrock K, Thorwesten L, Sandhaus M et al (2008) Physical education and daily life activity of nine and eleven year-old pupils. Dtsch Z Sportmed 59:228–233Google Scholar
  20. 20.
    Kang M, Bassett DR, Barreira TV et al (2009) How many days are enough? A study of 365 days of pedometer monitoring. Res Q Exerc Sport 80:445–453PubMedGoogle Scholar
  21. 21.
    Clemes SA, Griffiths PL (2008) How many days of pedometer monitoring predict monthly ambulatory activity in adults? Med Sci Sports Exerc 40:1589–1595PubMedCrossRefGoogle Scholar
  22. 22.
    Clemes SA, Hamilton SL, Griffiths PL (2011) Summer to winter variability in the step counts of normal weight and overweight adults living in the UK. J Phys Act Health 8:36–44PubMedGoogle Scholar
  23. 23.
    Tudor-Locke C, Lutes L (2009) Why do pedometers work? A reflection upon the factors related to successfully increasing physical activity. Sports Med 39:981–993PubMedCrossRefGoogle Scholar
  24. 24.
    Richardson CR, Newton TL, Abraham JJ et al (2008) A meta-analysis of pedometer-based walking interventions and weight loss. Ann Fam Med 6:69–77PubMedCrossRefGoogle Scholar
  25. 25.
    Bassett DR Jr, Ainsworth BE, Swartz AM et al (2000) Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc 32:471–480CrossRefGoogle Scholar
  26. 26.
    De Vries SI, Van Hirtum HW, Bakker I et al (2009) Validity and reproducibility of motion sensors in youth: a systematic update. Med Sci Sports Exerc 41:818–827CrossRefGoogle Scholar
  27. 27.
    Crouter SE, Schneider PL, Karabulut M, Bassett DR Jr (2003) Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc 35:1455–1460PubMedCrossRefGoogle Scholar
  28. 28.
    Müller C, Winter C, Mogwitz M, Rosenbaum D (2011) Validierung von neun Bewegungssensoren bei Kindern und jungen Erwachsenen. Sportwissenschaft 41:8–15CrossRefGoogle Scholar
  29. 29.
    Hasson RE, Haller J, Pober DM et al (2009) Validity of the Omron HJ-112 pedometer during treadmill walking. Med Sci Sports Exerc 41:805–809PubMedCrossRefGoogle Scholar
  30. 30.
    Sasaki JE, John D, Freedson PS (2011) Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 14(5):411–416PubMedCrossRefGoogle Scholar
  31. 31.
    Brage S, Brage N, Franks PW et al (2005) Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr 59:561–570PubMedCrossRefGoogle Scholar
  32. 32.
    Corder K, Brage S, Wareham NJ, Ekelund U (2005) Comparison of PAEE from combined and separate heart rate and movement models in children. Med Sci Sports Exerc 37:1761–1767PubMedCrossRefGoogle Scholar
  33. 33.
    Sun DX, Schmidt G, Teo-Koh SM (2008) Validation of the RT3 accelerometer for measuring physical activity of children in simulated free-living conditions. Pediatr Exerc Sci 20:181–197PubMedGoogle Scholar
  34. 34.
    Hussey J, Bennett K, Dwyer JO et al (2009) Validation of the RT3 in the measurement of physical activity in children. J Sci Med Sport 12:130–133PubMedCrossRefGoogle Scholar
  35. 35.
    Vanhelst J, Theunynck D, Gottrand F, Beghin L (2010) Reliability of the RT3 accelerometer for measurement of physical activity in adolescents. J Sports Sci 28:375–379PubMedCrossRefGoogle Scholar
  36. 36.
    Coleman KL, Smith DG, Boone DA et al (1999) Step activity monitor: long-term, continuous recording of ambulatory function. J Rehabil Res Dev 36:8–18PubMedGoogle Scholar
  37. 37.
    McDonald CM, Widman L, Abresch RT et al (2005) Utility of a step activity monitor for the measurement of daily ambulatory activity in children. Arch Phys Med Rehabil 86:793–801PubMedCrossRefGoogle Scholar
  38. 38.
    Resnick B, Nahm ES, Orwig D et al (2001) Measurement of activity in older adults: reliability and validity of the Step Activity Monitor. J Nurs Meas 9:275–290PubMedGoogle Scholar
  39. 39.
    Karabulut M, Crouter SE, Bassett DR Jr (2005) Comparison of two waist-mounted and two ankle-mounted electronic pedometers. Eur J Appl Physiol 95:335–343PubMedCrossRefGoogle Scholar
  40. 40.
    Mitre N, Lanningham-Foster L, Foster R, Levine JA (2009) Pedometer accuracy for children: can we recommend them for our obese population? Pediatrics 123:e127–e131PubMedCrossRefGoogle Scholar
  41. 41.
    Brandes M, Schomaker R, Mollenhoff G, Rosenbaum D (2008) Quantity versus quality of gait and quality of life in patients with osteoarthritis. Gait Posture 28:74–79PubMedCrossRefGoogle Scholar
  42. 42.
    Hartmann A, Murer K, Bie RA de, Bruin ED de (2009) Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk tri-axial accelerometer system. Gait Posture 30:351–355PubMedCrossRefGoogle Scholar
  43. 43.
    Taraldsen K, Askim T, Sletvold O et al (2011) Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. Phys Ther 91:277–285PubMedCrossRefGoogle Scholar
  44. 44.
    Harrington DM, Welk GJ, Donnelly AE (2011) Validation of MET estimates and step measurement using the ActivPAL physical activity logger. J Sports Sci 29:627–633PubMedCrossRefGoogle Scholar
  45. 45.
    Kozey-Keadle S, Libertine A, Lyden K et al (2011) Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc 43:1561–1567PubMedCrossRefGoogle Scholar
  46. 46.
    Mackey AH, Hewart P, Walt SE, Stott NS (2009) The sensitivity and specificity of an activity monitor in detecting functional activities in young people with cerebral palsy. Arch Phys Med Rehabil 90:1396–1401PubMedCrossRefGoogle Scholar
  47. 47.
    Welk GJ, McClain JJ, Eisenmann JC, Wickel EE (2007) Field validation of the MTI Actigraph and BodyMedia armband monitor using the IDEEA monitor. Obesity (Silver Spring) 15:918–928Google Scholar
  48. 48.
    Calabro MA, Welk GJ, Eisenmann JC (2009) Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc 41:1714–1720PubMedCrossRefGoogle Scholar
  49. 49.
    Johannsen DL, Calabro MA, Stewart J et al (2010) Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 42:2134–2140PubMedCrossRefGoogle Scholar
  50. 50.
    Toole T, Thorn JE, Panton LB et al (2007) Effects of a 12 month pedometer walking program on gait, body mass index, and lower extremity function in obese women. Percept Mot Skills 104:212–220PubMedCrossRefGoogle Scholar
  51. 51.
    Clemes SA, Parker RA (2009) Increasing our understanding of reactivity to pedometers in adults. Med Sci Sports Exerc 41:674–680PubMedCrossRefGoogle Scholar
  52. 52.
    Bravata DM, Smith-Spangler C, Sundaram V et al (2007) Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298:2296–2304PubMedCrossRefGoogle Scholar
  53. 53.
    Kang M, Marshall SJ, Barreira TV, Lee JO (2009) Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport 80:648–655PubMedGoogle Scholar
  54. 54.
    Tudor-Locke C, Washington TL, Hart TL (2009) Expected values for steps/day in special populations. Prev Med 49:3–11PubMedCrossRefGoogle Scholar
  55. 55.
    Winter CC, Brandes M, Müller C et al (2010) Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord 11:233PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2011

Authors and Affiliations

  1. 1.Institut für Experimentelle Muskuloskelettale MedizinUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations