Potenzial hämatopoetischer Stammzellen als Ausgangsmaterial für Arzneimittel für neuartige Therapien

  • H. Bönig
  • M. Heiden
  • J. Schüttrumpf
  • M.M. Müller
  • E. Seifried
Leitthema
  • 108 Downloads

Zusammenfassung

Individualisierte, (stamm)zellbasierte Therapien für angeborene und erworbene Erkrankungen gehören zu den vielversprechenden, neuen Behandlungsoptionen des 21. Jahrhunderts. Bevor das Potenzial derartiger Therapien aber ausgeschöpft werden kann, sind zahlreiche grundlagenwissenschaftliche und verfahrenstechnische Fragen zu lösen. Eine dieser Fragen ist die nach der idealen Zelle für die Generierung derartiger Zellmedikamente. In vielerlei Hinsicht erfüllen hämatopoetische Stammzellen die Anforderungen, die an Stammzellen als Ausgangsprodukt für neuartige Zelltherapeutika gestellt werden. Hierzu zählen ihre relativ einfache Gewinnung in hohen Zelldosen, ihre gute phänotypische Definierbarkeit, die eine prospektive Anreicherung ermöglicht, sowie bereits vorliegende Erfahrungen zur In-vitro-Manipulation dieser Zellen. Das vorliegende fokussierte Perspektiven-Manuskript diskutiert die grundsätzliche und spezielle Eignung hämatopoetischer Stammzellen als Ausgangsprodukt für neuartige Zelltherapeutika und gibt Beispiele für ihre mögliche hämatologische und nicht-hämatologische therapeutische Anwendung.

Schlüsselwörter

ATMP Neuartige Therapien Hämatopoetische Stammzelle Gentherapie Somatische Zelltherapie 

Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products

Abstract

Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

Keywords

ATMPs Advanced therapy medicinal products Hematopoietic stem cells Gene therapy Somatic cell therapy 

Literatur

  1. 1.
    Verheugen G (2009) Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products. Text with EEA relevance 2011 Jan 16 Available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:242:0003:01:EN:HTMLGoogle Scholar
  2. 2.
    Medicinal Products Act in the version published on 12 December 2005 (Federal Law Gazette [BGBl.]) Part I p.3394, last amended by Article 1 of the Ordinance of 28 September 2009 (Federal Law Gazette I p. 3172) 2011 Jan 16Google Scholar
  3. 3.
    EudraLex – Volume 4 Good manufacturing practice (GMP) Guidelines (last updated 12-01-2011) 2011 Jan 16Google Scholar
  4. 4.
    Garrett RW, Emerson SG (2009) Bone and blood vessels: the hard and the soft of hematopoietic stem cell niches. Cell Stem Cell 4:503–506PubMedCrossRefGoogle Scholar
  5. 5.
    Lymperi S, Ferraro F, Scadden DT (2010) The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci 1192:12–18PubMedCrossRefGoogle Scholar
  6. 6.
    Papayannopoulou T, Scadden DT (2008) Stem-cell ecology and stem cells in motion. Blood 111:3923–3930PubMedCrossRefGoogle Scholar
  7. 7.
    McCulloch EA, Till JE (1971) Regulatory mechanisms acting on hemopoietic stem cells. Some clinical implications. Am J Pathol 65:601–619PubMedGoogle Scholar
  8. 8.
    Weaver CH, Buckner CD, Longin K et al (1993) Syngeneic transplantation with peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Blood 82:1981–1984PubMedGoogle Scholar
  9. 9.
    Broxmeyer HE, Kurtzberg J, Gluckman E et al (1991) Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 17:313–329PubMedGoogle Scholar
  10. 10.
    Civin CI (1992) Identification and positive selection of human progenitor/stem cells for bone marrow transplantation. Prog Clin Biol Res 377:461–472PubMedGoogle Scholar
  11. 11.
    McGuckin CP, Pearce D, Forraz N et al (2003) Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol 71:341–350PubMedCrossRefGoogle Scholar
  12. 12.
    Szilvassy SJ, Lansdorp PM, Humphries RK et al (1989) Isolation in a single step of a highly enriched murine hematopoietic stem cell population with competitive long-term repopulating ability. Blood 74:930–939PubMedGoogle Scholar
  13. 13.
    Dick JE, Pflumio F, Lapidot T (1991) Mouse models for human hematopoiesis. Semin Immunol 3:367–378PubMedGoogle Scholar
  14. 14.
    Dick JE, Sirard C, Pflumio F, Lapidot T (1992) Murine models of normal and neoplastic human haematopoiesis. Cancer Surv 15:161–181PubMedGoogle Scholar
  15. 15.
    Horn PA, Thomasson BM, Wood BL et al (2003) Distinct hematopoietic stem/progenitor cell populations are responsible for repopulating NOD/SCID mice compared with nonhuman primates. Blood 102:4329–4335PubMedCrossRefGoogle Scholar
  16. 16.
    Tse W, Bunting KD (2008) The expanding tool kit for hematopoietic stem cell research. Methods Mol Biol 430:3–18PubMedCrossRefGoogle Scholar
  17. 17.
    Miltenyi S (1997) CD34+ selection: The basic component for graft engineering. Oncologist 2:410–413PubMedGoogle Scholar
  18. 18.
    Bonig H, Priestley GV, Oehler V, Papayannopoulou T (2007) Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 35:326–334PubMedCrossRefGoogle Scholar
  19. 19.
    Kollet O, Shivtiel S, Chen YQ et al (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112:160–169PubMedGoogle Scholar
  20. 20.
    Kohn DB, Kantoff PW, Eglitis MA et al (1987) Retroviral-mediated gene transfer into mammalian cells. Blood Cells 13:285–298PubMedGoogle Scholar
  21. 21.
    Kohn DB, Anderson WF, Blaese RM (1989) Gene therapy for genetic diseases. Cancer Invest 7:179–192PubMedCrossRefGoogle Scholar
  22. 22.
    Kohn DB (1995) The current status of gene therapy using hematopoietic stem cells. Curr Opin Pediatr 7:56–63PubMedCrossRefGoogle Scholar
  23. 23.
    Kohn DB (1999) Gene therapy using hematopoietic stem cells. Curr Opin Mol Ther 1:437–442PubMedGoogle Scholar
  24. 24.
    Ariga T (2006) Gene therapy for primary immunodeficiency diseases: recent progress and misgivings. Curr Pharm Des 12:549–556PubMedCrossRefGoogle Scholar
  25. 25.
    Hong Y, Lee K, Choi JY et al (2002) High efficiency gene transfer to human CD34+ cells. Int J Hematol 76S1:264–265CrossRefGoogle Scholar
  26. 26.
    Bigger BW, Siapati EK, Mistry A et al (2006) Permanent partial phenotypic correction and tolerance in a mouse model of hemophilia B by stem cell gene delivery of human factor IX. Gene Ther 13:117–126PubMedCrossRefGoogle Scholar
  27. 27.
    Hacein-Bey-Abina S, Hauer J, Lim A et al (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364PubMedCrossRefGoogle Scholar
  28. 28.
    Ohmori T, Ishiwata A, Kashiwakura Y et al (2008) Phenotypic correction of hemophilia A by ectopic expression of activated factor VII in platelets. Mol Ther 16:1359–1365PubMedCrossRefGoogle Scholar
  29. 29.
    Hacein-Bey-Abina S, Von KC, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256PubMedCrossRefGoogle Scholar
  30. 30.
    Hacein-Bey-Abina S, Von KC, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419PubMedCrossRefGoogle Scholar
  31. 31.
    Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142PubMedCrossRefGoogle Scholar
  32. 32.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259PubMedCrossRefGoogle Scholar
  33. 33.
    Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7:204–215PubMedCrossRefGoogle Scholar
  34. 34.
    Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113:155–160PubMedCrossRefGoogle Scholar
  35. 35.
    Eckman PM, Bertog SC, Wilson RF, Henry TD (2010) Ischemic cardiac complications following G-CSF. Catheter Cardiovasc Interv 76:98–101PubMedCrossRefGoogle Scholar
  36. 36.
    Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedCrossRefGoogle Scholar
  37. 37.
    Wohrle J, Merkle N, Mailander V et al (2010) Results of intracoronary stem cell therapy after acute myocardial infarction. Am J Cardiol 105:804–812PubMedCrossRefGoogle Scholar
  38. 38.
    Seifried E, Klueter H, Weidmann C et al (2011) How much blood is needed? Vox Sang 100:10–21PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura Y, Hiroyama T, Miharada K, Kurita R (2011) Red blood cell production from immortalized progenitor cell line. Int J Hematol 93:5–9PubMedCrossRefGoogle Scholar
  40. 40.
    Lu SJ, Feng Q, Park JS et al (2008) Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112:4475–4484PubMedCrossRefGoogle Scholar
  41. 41.
    Boehm D, Murphy WG, Al-Rubeai M (2009) The potential of human peripheral blood derived CD34+ cells for ex vivo red blood cell production. J Biotechnol 144:127–134PubMedCrossRefGoogle Scholar
  42. 42.
    Su RJ, Zhang XB, Li K et al (2002) Platelet-derived growth factor promotes ex vivo expansion of CD34+ cells from human cord blood and enhances long-term culture-initiating cells, non-obese diabetic/severe combined immunodeficient repopulating cells and formation of adherent cells. Br J Haematol 117:735–746PubMedCrossRefGoogle Scholar
  43. 43.
    Cortin V, Garnier A, Pineault N et al (2005) Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol 33:1182–1191PubMedCrossRefGoogle Scholar
  44. 44.
    Gekas C, Graf T (2010) Induced pluripotent stem cell-derived human platelets: one step closer to the clinic. J Exp Med 207:2781–2784PubMedCrossRefGoogle Scholar
  45. 45.
    Loh YH, Agarwal S, Park IH et al (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479PubMedCrossRefGoogle Scholar
  46. 46.
    Eminli S, Foudi A, Stadtfeld M et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2011

Authors and Affiliations

  • H. Bönig
    • 1
  • M. Heiden
    • 2
  • J. Schüttrumpf
    • 1
  • M.M. Müller
    • 1
  • E. Seifried
    • 1
  1. 1.Institut für Transfusionsmedizin und ImmunhämatologieKlinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main und DRK-Blutspendedienst Baden-Württemberg – Hessen gemeinnützige GmbH, FrankfurtFrankfurtDeutschland
  2. 2.Paul-Ehrlich-InstitutLangenDeutschland

Personalised recommendations