Pharmakotherapie mittels Nanomedizin

Magnetische Nanopartikel für Drug Delivery und Hyperthermie – neue Chancen für die Krebsbehandlung
Leitthema

Zusammenfassung

Die Anwendung der Nanotechnologie für die Behandlung, die Diagnose und die Überwachung von Erkrankungen wird unter dem Begriff „Nanomedizin“ zusammengefasst. Eine besonders aussichtsreiche Anwendung wird hierbei den nanopartikulären Drug-Delivery-Systemen zugeschrieben. Das Ziel dieser neuartigen Trägersysteme ist die selektive Anreicherung von Wirksubstanzen in erkrankten Gewebestrukturen, die Erhöhung der Bioverfügbarkeit, die Verringerung des Wirkstoffabbaus und vor allem eine Reduktion beziehungsweise Vermeidung von unerwünschten Nebenwirkungen. Neben zahlreichen Nanosystemen, die als Carrier zur Verfügung stehen, ist die Verwendung von Eisenoxidnanopartikeln besonders hervorzuheben, da diese zum einen die Wirkstoffträger sind und zum anderen auch mithilfe konventioneller Bildgebungsverfahren (Röntgentomographie, Magnetresonanztomographie) visualisiert werden können („Theranostik“). Darüber hinaus können sie für die Hyperthermie, eine weitere wichtige Therapiesäule der Nanomedizin, angewendet werden. Beide Verfahren sollen zu einer personalisierten und zielgerichteten Therapie führen, die gerade angesichts weltweit steigender Krebserkrankungsfälle von besonderer medizinischer, gesellschaftspolitischer und ökonomischer Bedeutung ist.

Schlüsselwörter

Nanomedizin Nanopartikel Wirkstofftransport Magnetisches Drug-Targeting Hyperthermie 

Nanomedicine

Magnetic nanoparticles for drug delivery and hyperthermia – new chances for cancer therapy

Abstract

The application of nanotechnology for the treatment, diagnosis, and monitoring of illnesses is summarized under the term nanomedicine. A particularly promising application is attributed to nanoparticular drug delivery systems. The goal of these new carrier systems is the selective enrichment of active substances in diseased tissue structures, an increase in bioavailability, the decrease of the active substance degradation and, above all, the reduction and/or avoidance of unwanted side effects. Apart from numerous nanosystems acting as carriers, the use of iron oxide nanoparticles has to be particularly emphasized. On the one hand, those particles are the carriers of the active substance and, on the other hand, can also be visualized with conventional imaging techniques (x-ray tomography, magnetic resonance imaging), called theranostic. In addition, they can be used for hyperthermia, another important supporting pillar of nanomedicine. Both procedures should lead to a personalized and goal-oriented therapy, which is of special medical and socioeconomic importance in view of the increasing number of cancer patients worldwide.

Keywords

Nanomedicine Nanoparticles Drug delivery Magnetic drug targeting Hyperthermia 

Literatur

  1. 1.
    WHO (2007) Cancer. Vol 2010. http://www.who.int/mediacentre/factsheet/fs297/en/index.htmlGoogle Scholar
  2. 2.
    Krebsgesellschaft D (2008) Krebs in Deutschland. Häufigkeiten und Trends. Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. in Zusammenarbeit mit dem Robert Koch-Institut, Berlin. http://www.krebsgesellschaft.de/download/Kid2008/.pdfGoogle Scholar
  3. 3.
    Wagner V, Dullaart A, Bock AK et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217CrossRefPubMedGoogle Scholar
  4. 4.
    Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760CrossRefPubMedGoogle Scholar
  5. 5.
    Perkins WR, Ahmad I, Li XG et al (2000) Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds. Int J Pharm 27–39Google Scholar
  6. 6.
    Pankhurst QA, Thanh NKT, Jones SK et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001–224016CrossRefGoogle Scholar
  7. 7.
    Bilkenroth U, Taubert H, Riemann D et al (2001) Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation. Int J Cancer 92:577–582CrossRefPubMedGoogle Scholar
  8. 8.
    Taupitz M, Wagner S, Hamm B et al (1993) MR lymphography using iron oxide particles. Detection of lymph node metastases in the VX2 rabbit tumour model. Acta Radiol 34:10–15PubMedGoogle Scholar
  9. 9.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499CrossRefPubMedGoogle Scholar
  10. 10.
    Gao Y, Kumar C (Hrsg) (2005) Biofunctionalization of nanomaterials, vol 72. Wiley-VCH GmbH & Co. KGaA, WeinheimGoogle Scholar
  11. 11.
    Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliver Rev 17:31–48CrossRefGoogle Scholar
  12. 12.
    Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliver Rev 47:3–19CrossRefGoogle Scholar
  13. 13.
    Alksne JFFA, Rand R (1966) Magnetically controlled metallic thrombosis of intracranial aneurysms. Surgery 60:212–218Google Scholar
  14. 14.
    Widder KJ, Morris RM, Howard DP et al (1993) Selective targeting of magnetic albumin microspheres to the yoshida sarcoma: ultrastructural evalutation of microsphere distribution. Eur J Cancer Clin Oncol 19:141–147CrossRefGoogle Scholar
  15. 15.
    Wilson MW, Kerlan RK Jr, Fidelman NA et al (2004) Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite – initial experience with four patients. Radiology 230:287–293CrossRefPubMedGoogle Scholar
  16. 16.
    Lubbe AS, Bergemann C, Riess H et al (1996) Clinical experiences with magnetic drag targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693PubMedGoogle Scholar
  17. 17.
    Alexiou C, Jurgons R, Schmid RJ et al (2003) Magnetic drug targeting – biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149CrossRefPubMedGoogle Scholar
  18. 18.
    Brigger I, Morizet J, Laudani L et al (2004) Negative preclinical results with stealth ((R)) nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J Control Release 100:29–40CrossRefPubMedGoogle Scholar
  19. 19.
    Alexiou C, Diehl D, Henninger P et al (2006) A high field gradient magnet for magnetic drug targeting. IEEE Trans Appl Supercond 16:1527–1530CrossRefGoogle Scholar
  20. 20.
    Alexiou C, Jurgons R, Schmid R et al (2005) Magnetic drug targeting – a new approach in locoregional tumortherapy with chemotherapeutic agents. Experimental animal studies. HNO 53:618–622CrossRefPubMedGoogle Scholar
  21. 21.
    Alexiou C, Arnold W, Hulin P et al (2001) Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 225:187–193CrossRefGoogle Scholar
  22. 22.
    Rahn H, Gomez-Morilla I, Jurgons R et al (2008) Microcomputed tomography analysis of ferrofluids used for cancer treatment. J Phys Condens Matter 20:204152–204156CrossRefGoogle Scholar
  23. 23.
    Alexiou C, Hulin P, Klein RJ et al (2002) Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater 252:363–366CrossRefGoogle Scholar
  24. 24.
    Alexiou C, Arnold W, Klein RJ et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648PubMedGoogle Scholar
  25. 25.
    Alexiou C, Schmid RJ, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophysics J Biophysics Letters 35:446–450CrossRefGoogle Scholar
  26. 26.
    Nauts HCF, Bogatko FH (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand 276:1–103Google Scholar
  27. 27.
    Gilchrist RK, Medal R, Shorey WD et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefPubMedGoogle Scholar
  28. 28.
    Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5:83–102CrossRefPubMedGoogle Scholar
  29. 29.
    Jordan A, Scholz R, Wust P et al (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 13:587–605CrossRefPubMedGoogle Scholar
  30. 30.
    Johannsen M, Thiesen B, Jordan A et al (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Prostate 64:283–292CrossRefPubMedGoogle Scholar
  31. 31.
    Hilger I, Andra W, Hergt R et al (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575PubMedGoogle Scholar
  32. 32.
    Moskovitz B, Meyer G, Kravtzov A et al (2005) Thermo-chemotherapy for intermediate or high-risk recurrent superficial bladder cancer patients. Ann Oncol 16:585–589CrossRefPubMedGoogle Scholar
  33. 33.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  34. 34.
    Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633CrossRefPubMedGoogle Scholar
  35. 35.
    Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  36. 36.
    Arap W, Haedicke W, Bernasconi M et al (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99:1527–1531CrossRefPubMedGoogle Scholar
  37. 37.
    Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11:S81–S91CrossRefPubMedGoogle Scholar
  38. 38.
    Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–299CrossRefPubMedGoogle Scholar
  39. 39.
    Shen Z, Wei W, Zhao YJ et al (2008) Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. Eur J Pharm Sci 35:271–282CrossRefPubMedGoogle Scholar
  40. 40.
    Chuang CY, Don TM, Chiu WY (2009) Synthesis of chitosan-based thermo- and pH-responsive porous nanoparticles by temperature-dependent self-assembly method and their application in drug release. J Polym Sci A Polym Chem 47:5126–5136CrossRefGoogle Scholar
  41. 41.
    Shen ZY, Ma GH, Dobashi T et al (2008) Preparation and characterization of thermo-responsive albumin nanospheres. Int J Pharm 346:133–142CrossRefPubMedGoogle Scholar
  42. 42.
    Lee CF, Wen CJ, Lin CL et al (2004) Morphology and temperature responsiveness-swelling relationship of poly(N-isopropylamide-chitosan) copolymers and their application to drug release. J Polym Sci A Polym Chem 42:3029–3037CrossRefGoogle Scholar
  43. 43.
    Chuang CY, Don TM, Chiu WY (2009) Synthesis and properties of chitosan-based thermo- and pH-responsive nanoparticles and application in drug release. J Polym Sci A Polym Chem 47:2798–2810CrossRefGoogle Scholar
  44. 44.
    Stover TC, Kim YS, Lowe TL et al (2008) Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials 29:359–369CrossRefPubMedGoogle Scholar
  45. 45.
    Bakhtiari ABS, Hsiao D, Jin GX et al (2009) An efficient method based on the photothermal effect for the release of molecules from metal nanoparticle surfaces. Angewandte Chemie – International Edition 48:4166–4169Google Scholar
  46. 46.
    Purushotham S, Chang PE, Rumpel H et al (2009) Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 20:305101–305112CrossRefPubMedGoogle Scholar
  47. 47.
    Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ et al (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449CrossRefPubMedGoogle Scholar
  48. 48.
    Welch MJ, Hawker CJ, Wooley KL (2009) The advantages of nanoparticles for PET. J Nucl Med 50:1743–1746CrossRefPubMedGoogle Scholar
  49. 49.
    OECD (2005) Opportunities and risks of nanotechnologies. Report in co-operation with the OECD International Futures Programme. www.oecd.org/dataoecd/32/1/44108334.pdfGoogle Scholar
  50. 50.
    Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine (Lond) 4:799–812Google Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  1. 1.Sektion für Experimentelle Onkologie und Nanomedizin (Else-Kröner-Fresenius-Stiftungsprofessur)Nasen-Ohren-Klinik-Kopf- und Halschirurgie des Universitätsklinikums ErlangenErlangenDeutschland

Personalised recommendations