Sicherheit von Impfstoffen

Leitthema

Zusammenfassung

Schutzimpfungen sind eine der effektivsten Maßnahmen zur primären Prävention von Infektionskrankheiten. Fortschritte bei der Entwicklung, Herstellung und Kontrolle tragen zur zunehmenden Sicherheit und Verträglichkeit von Impfstoffen bei. Aber auch moderne Impfstoffe sind nicht vollständig frei von Nebenwirkungen. Solche Nebenwirkungen beziehungsweise Impfkomplikationen müssen kontinuierlich erkannt, verstanden, bewertet und, soweit möglich, verhütet beziehungsweise in ihrer Häufigkeit und Schwere reduziert werden. Mit diesen Aktivitäten beschäftigt sich die Pharmakovigilanz (Arzneimittelsicherheit) sowohl vor, während als auch nach der Zulassung der Arzneimittel, um deren fortwährende Sicherheit zu gewährleisten. Die klinische Prüfung von Impfstoffen ist eine Voraussetzung für ihre Zulassung. Trotz intensiver Forschung ist zum Zeitpunkt der Zulassung eines Impfstoffes die klinische Erfahrung jedoch begrenzt. Zumeist liegen Daten über wenige Tausend bis Zehntausend Impflinge vor. In der Regel können damit unerwünschte Ereignisse im Bereich von bis zu 1/1000, maximal von 1/10.000 bis 1/20.000 detektiert werden. Seltenere Nebenwirkungen und Langzeiteffekte werden daher zumeist erst nach der Zulassung erkannt. Ein passives Surveillance-System zum frühzeitigen Erkennen von Risikosignalen nach der Zulassung ist das sogenannte Spontanerfassungssystem. Hier werden spontane Verdachtsmeldungen an das Paul-Ehrlich-Institut gemeldet, dort registriert, bewertet und – falls erforderlich – Maßnahmen zur Risikoabwehr und Risikovorsorge eingeleitet. Aus dem Spontanerfassungssystem können jedoch keine Nebenwirkungshäufigkeiten sondern lediglich Signale ermittelt beziehungsweise detektiert werden. Auch ist es schwer, eine Kausalität zu belegen. Um Kausalität und Häufigkeiten von Impfkomplikationen zu ermitteln, sind andere Instrumente (zum Beispiel klinische Studien, epidemiologische Untersuchungen) erforderlich. Im vorliegenden Beitrag wird der wissenschaftliche Kenntnisstand zur Kausalität und Häufigkeit einzelner Nebenwirkungen und hypothetischer Risiken zusammengefasst.

Schlüsselwörter

Impfkomplikation Nebenwirkung Infektionsschutzgesetz Impfung Impfsicherheit 

Vaccine safety

Abstract

Vaccinations rank among the most effective preventive measures for protection against infectious diseases. Advances in development, production, and control of vaccines facilitate the increasing standards of vaccine safety and tolerance. Comprehensive pre-clinical and clinical tests as well as modern manufacturing and testing methods ensure that vaccines marketed nowadays are safe. As a rule, clinical trials performed before granting the marketing authorisation identify the most frequent adverse events and these results are used to evaluate the safety of the product. Such trials can identify relatively rare adverse events, which occur with a frequency of 1:1,000 to 1:10,000 of all vaccinated individuals. These adverse events will then be included in the summary of product characteristics (SPC) for the vaccine. Even after comprehensive clinical trials of vaccines, it is possible that very rare adverse events may be observed for the first time during general use of a vaccine. In recent years concern over real and alleged risks of vaccines relative to their benefit has grown in many countries including Germany. One reason for this is the fact that most infections that were previously feared have now faded from memory. This situation can be ascribed in part to the success of vaccination. In recent years an increased awareness of substantiated and assumed risks following immunization has been reported in Germany as well as many other countries. In part this may be due to the absence of infectious disease-related mortality and morbidity and to the fact that the severity of vaccine-preventable diseases is no longer observable. Consequently, rare and hypothetical adverse events attain undue public attention. As vaccination willingness diminishes, a resulting lower vaccination rate renders the population susceptible to the natural wild type infection with concomitant increases in mortality and morbidity of vaccine-preventable diseases. Thus, very rare or even unproven adverse events have attracted public attention. Declining vaccination rates resulting from these fears may result in a renewed increase of vaccine-preventable diseases. Adverse events following immunization (AEFI) need to be recognized and adequately assessed. This review presents the scientific knowledge concerning causality and frequency of several AEFI and hypothetical risks.

Keywords

Adverse drug reactions Adverse events following immunisation German Infection Protection Act Vaccination Vaccine safety 

Literatur

  1. 1.
    Diggle L, Deeks J (2000) Effect of needle length on incidence of local reactions to routine immunisation in infants aged 4 month: randomised controlled trial. Br Med J 321:931–933CrossRefGoogle Scholar
  2. 2.
    Petousis-Harris H (2008) Vaccine injection technique and reactogenicity – evidence for practice. Vaccine 26:6299–6304CrossRefPubMedGoogle Scholar
  3. 3.
    Georgitis JW, Fasano MB (2001) Allergenic components of vaccines and avoidance of vaccination-related adverse events. Curr Allergy Rep 1(1):11–17CrossRefPubMedGoogle Scholar
  4. 4.
    Cines DB et al (2009) Pathobiology of secondary immune thrombocytopenia. Semin Hematol 46:S2–S14CrossRefPubMedGoogle Scholar
  5. 5.
    Black C et al (2003) MMR vaccine and idiopathic thrombocytopenic purpura. Br J Clin Pharmacol 55:107–111CrossRefPubMedGoogle Scholar
  6. 6.
    Miller E et al (2001) Idiopathic thrombocytopenic purpura and MMR vaccine. Arch Dis Child 84(3):227–229CrossRefPubMedGoogle Scholar
  7. 7.
    France EK et al (2008) Risk of immune thrombocytopenic purpura after measles-mumps-rubella immunization in children. Pediatrics 121(3):e687–e692CrossRefPubMedGoogle Scholar
  8. 8.
    Stowe J et al (2008) Idiopathic thrombocytopenic purpura and the second dose of MMR. Arch Dis Child 93:182–183CrossRefPubMedGoogle Scholar
  9. 9.
    Rajantie J et al (2007) Vaccination associated thrombocytopenic purpura in children. Vaccine 25:1838–1840CrossRefPubMedGoogle Scholar
  10. 10.
    Buettcher M et al (2007) Hypotonic-hyporesponsive episode (HHE) as an adverse event following immunization in early childhood: case definition and guidelines for data collection, analysis and presentation. Vaccine 31:5875–5881CrossRefGoogle Scholar
  11. 11.
    Vestergaard M et al (2004) MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. JAMA 292:351–357CrossRefPubMedGoogle Scholar
  12. 12.
    Neubauer BA et al (2008) Epilepsie im Kindes- und Jugendalter. Dtsch Ärztebl Int 105:319–328PubMedGoogle Scholar
  13. 13.
    Berkovic SF et al (2006) De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurol 5(6):488–492CrossRefPubMedGoogle Scholar
  14. 14.
    Juurlink DN et al (2006) Guillain-Barré syndrome after influenza vaccination in adults: a population-based study. Arch Intern Med 166:2217–2221CrossRefPubMedGoogle Scholar
  15. 15.
    Nachamkin I et al (2008) Anti-ganglioside antibody induction by swine (A/NJ/1976/N1H1) and other influenza vaccines: insite into vaccine-associated Guillain-Barre syndrome. J Infect Dis 198:226–233CrossRefPubMedGoogle Scholar
  16. 16.
    Kaplan JE et al (1982) Guillain-Barré syndrome in the United States, 1979–1980 and 1980–1981. Lack of an association with influenza vaccination. JAMA 248(6):698–700CrossRefPubMedGoogle Scholar
  17. 17.
    Hurwitz ES et al (1981) Guillain-Barré syndrome and the 1978–1979 influenza vaccine. N Engl J Med 304(26):1557–1561PubMedCrossRefGoogle Scholar
  18. 18.
    Lasky T et al (1998) The Guillain-Barré syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med 339(25):1797–1802CrossRefPubMedGoogle Scholar
  19. 19.
    Stowe J et al (2009) Investigation of the temporal association of Guillain-Barre syndrome with influenza vaccine and influenzalike illness using the United Kingdom General Practice Research Database. Am J Epidemiol 169(3):382–388CrossRefPubMedGoogle Scholar
  20. 20.
    Kelso JM et al (2003) Immunization of egg-allergic individuals with egg- or chicken derived vaccines. Immunol Allergy Clin North Am 23:635–648CrossRefPubMedGoogle Scholar
  21. 21.
    Cerecedo Carballo I et al (2007) Safety of measles-mumps-rubella vaccine (MMR) in patients allergic to eggs. Allergol Immunopathol (Madr) 35:105–109Google Scholar
  22. 22.
    Proebstle TM et al (1995) Severe anaphylactic reaction to topical administration of framycetin. J Allergy Clin Immunol 96(3):429–430CrossRefPubMedGoogle Scholar
  23. 23.
    Romano Aet al (2002) Anaphylaxis to streptomycin. Allergy 57(11):1087–1088CrossRefPubMedGoogle Scholar
  24. 24.
    Pérez R et al (1996) Anaphylaxis induced by streptomycin in cell media. Allergy 51(2):135–136PubMedGoogle Scholar
  25. 25.
    Heidary N, Cohen DE (2005) Hypersensitivity reactions to vaccine components. Dermatitis 16:115PubMedGoogle Scholar
  26. 26.
    Lim SW et al (2006) IgE-mediated allergy to formaldehyde from topical application. Contact Dermatitis 54:230CrossRefPubMedGoogle Scholar
  27. 27.
    Kunisada M et al (2002) Anaphylaxis due to formaldehyde released from root-canal disinfectant. Contact Dermatitis 47:215–218CrossRefPubMedGoogle Scholar
  28. 28.
    Nabeshima Y et al (2004) Anaphylaxis after dental treatment with a formaldehyde-containing tooth-filling material. Acta Derm Venereol 84(6):497–498PubMedGoogle Scholar
  29. 29.
    Tas E et al (2002) IgE-mediated urticaria from formaldehyde in a dental root canal compound. J Investig Allergol Clin Immunol 12(2):130–133PubMedGoogle Scholar
  30. 30.
    Umweltbundesamt (2004) Untersuchungen zur Verbreitung umweltbedingter Kontaktallergien mit Schwerpunkt im privaten Bereich. WaBoLu-Heft 01/04Google Scholar
  31. 31.
    Nakayama T et al (1999) A clinical analysis of gelatin allergy and determination of its causal relationship to the previous administration of gelatin-containing acellular pertussis vaccine combined with diphtheria and tetanus toxoids. J Allergy Clin Immunol 103:321–325CrossRefPubMedGoogle Scholar
  32. 32.
    Davies MJ (1987) Polygeline. Dev Biol Stand 67:129–131PubMedGoogle Scholar
  33. 33.
    Roswarne F, Davidson A (1994) Anaphylactoid reaction to haemaccel. Anaesth Intensive Care 22(3):317–318Google Scholar
  34. 34.
    Cox NH et al (1988) Allergy to non-toxoid constituents of vaccines and implications for patch testing. Contact Dermatitis 18:143–146CrossRefPubMedGoogle Scholar
  35. 35.
    Lee-Wong M (2005) A generalized reaction to thimerosal from an influenza vaccine. Ann Allergy Asthma Immunol 94:90–94PubMedCrossRefGoogle Scholar
  36. 36.
    Cox NH, Forsyth A (1988) Thiomersal allergy and vaccination reactions. Contact Dermatitis 18:229–233CrossRefPubMedGoogle Scholar
  37. 37.
    Audicana MT et al (2002) Allergic contact dermatitis from mercury antiseptics and derwatives: study protocol of tolerance to intramuscular injections of thimerosal. Am J Contact Dermatitis 13:3–9CrossRefPubMedGoogle Scholar
  38. 38.
    Ascherio A, Zhang SM, Hernán MA et al (2001) Hepatitis B vaccination and the risk of multiple sclerosis. N Engl J Med 344:327–332CrossRefPubMedGoogle Scholar
  39. 39.
    Confavreux C, Suissa S, Saddier P et al (2001) Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med 344(5):319–326CrossRefPubMedGoogle Scholar
  40. 40.
    DeStefano F, Verstraeten T, Jacksin LA et al (2003) Vaccinations and risk of central nervous system demyelinating diseases in adults. Arch Neurol 60:504–509CrossRefPubMedGoogle Scholar
  41. 41.
    Touzé E, Fourrier A, Rue-Fenouche C et al (2002) Hepatitis B vaccination and first central nervous system dermyelinating event: a case-control study. Neuroepidemiology 21:180–186CrossRefPubMedGoogle Scholar
  42. 42.
    Zipp F, Weil JG, Einhäupl KL (1999) No increase in demyelinating diseases after hepatitis B vaccination. Nat Med 5(9):964–965CrossRefPubMedGoogle Scholar
  43. 43.
    Hernán MA et al (2004) Recombinant hepatitis B vaccine and the risk of multiple sclerosis. Neurology 63:838–842PubMedGoogle Scholar
  44. 44.
    Hernán MA et al (2006) Tetanus vaccination and risk of multiple sclerosis: a systematic review. Neurology 67:212–215CrossRefPubMedGoogle Scholar
  45. 45.
    Classen JB, Classen DC (1999) Association between type 1 diabetes and Hib vaccine. Br Med J 319:1133Google Scholar
  46. 46.
    Keller-Stanislawski B et al (2001) Existiert ein Zusammenhang zwischen Impfungen und Typ-1-Diabetes mellitus bei Kindern und Jugendlichen? Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 44:613–618CrossRefGoogle Scholar
  47. 47.
    The EURODIAB Substudy 2 Study Group (2000) Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case-control investigation. Diabetologia 43(1):47–53CrossRefGoogle Scholar
  48. 48.
    DeStefano F et al (2001) Vaccine Safety Datalink Team: Childhood vaccinations, vaccination timing and risk of type 1 diabetes mellitus. Pediatrics 108(6):E112CrossRefPubMedGoogle Scholar
  49. 49.
    Hviid A et al (2004) Childhood vaccination and type 1 diabetes. N Engl J Med 350:1398–404CrossRefPubMedGoogle Scholar
  50. 50.
    Sipetic S et al (2003) The Belgrade childhood diabetes study: association of infections and vaccinations on diabetes in childhood. Ann Epidemiol 13(9):645–651CrossRefPubMedGoogle Scholar
  51. 51.
    Bellini WJ et al (2005) Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192:1686–1693CrossRefPubMedGoogle Scholar
  52. 52.
    Wakefield AJ et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis and pervasive developmental disorder in children. Lancet 351:637–641CrossRefPubMedGoogle Scholar
  53. 53.
    Kaulen H (2007) Masern-Mumps-Röteln-Impfung: Wie ein Impfstoff zu Unrecht in Misskredit gebracht wurde. Dtsch Arztebl 104(4):A-166/B–149/C-145Google Scholar
  54. 54.
    Demicheli V et al (2005) Vaccines for measles, mumps and rubella in children. Cochrane Database Syst Rev (4):1–47Google Scholar
  55. 55.
    Rapin J, Tuchman RF (2008) What ist new in autism? Curr Opin Neurol 21:143–149CrossRefPubMedGoogle Scholar
  56. 56.
    Madsen KM et al (2002) A population-based study of measles, mumps and rubella vaccination and autism. NEJM 347:1477–1482CrossRefPubMedGoogle Scholar
  57. 57.
    Weisser K et al (2004) Thiomersal und Impfungen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:1165–1174CrossRefGoogle Scholar
  58. 58.
    Priest ND (2004) The biological behaviour and bioavailability of aluminium in man, with spezial reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit 6:375–403CrossRefPubMedGoogle Scholar
  59. 59.
    Henning HV (1989) Die Toxizität des Aluminiums. Klin Wochenschr 67:1221–1228CrossRefPubMedGoogle Scholar
  60. 60.
    Alfrey AC (1986) Aluminium metabolism. Kidney Int 29:S8–S11Google Scholar
  61. 61.
    Bishop NJ et al (1997) Aluminium neurotoxicity in preterm infants receiving intravenous-feeding solutions. NEJM 336:1557–1561CrossRefPubMedGoogle Scholar
  62. 62.
    Tsou VM et al (1991) Elevated plasma aluminium levels in normal infants receiving antacids containing aluminium. Pediatrics 87:148–151PubMedGoogle Scholar
  63. 63.
    Flarend RE et al (1997) In vivo absorption of aluminium-containing vaccine adjuvants using 26-Al. Vaccine 15:1314–1318CrossRefPubMedGoogle Scholar
  64. 64.
    Vennemann MM et al (2007) Sudden infant death syndrome: no increased risk after immunisation. Vaccine 25:336–340CrossRefPubMedGoogle Scholar
  65. 65.
    Vennemann MM et al (2007) Do immunisations reduce the risk for SIDS? A meta-analysis. Vaccine 25:4875–4879CrossRefPubMedGoogle Scholar
  66. 66.
    Institute of medicine (2003) Immunization safety review: vaccinations and sudden unexpected death in infancy. http://www.iom.edu/CMS/3793/4705/5391.aspxGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Bundesinstitut für Sera und Impfstoffe (PEI)Paul-Ehrlich-InstitutLangenDeutschland

Personalised recommendations