Public Health Genomics

Die Zukunft wird heute gestaltet!
  • A. Brand
  • N. Rosenkötter
  • T. Schulte in den Bäumen
  • P. Schröder-Bäck
Leitthema

Zusammenfassung

Die Integration genombasierten Wissens in Forschung, Politik und Praxis von Public Health wird eine der größten Herausforderungen für unsere Gesundheitssysteme darstellen. In diesem Kontext trägt Public Health Genomics (PHG) als verantwortungsvolle und effektive Umsetzung genombasierten Wissens und genombasierter Technologien in die Gesundheitspolitik und Gesundheitsversorgung entscheidend zur Verbesserung der Gesundheit der Gesamtbevölkerung bei. Die verschiedenen Public-Health-Akteure sind gefordert, diese Innovationen, die aus Bereichen wie Systembiologie, Epigenomik, Integrativer Genomik, Umwelt-Genomik-Interaktionen resultieren, zeitnah in personalisierte und zielgruppenorientierte Interventionen zu integrieren. Insbesondere die aktuellen Ergebnisse aus der Systembiologie stellen bereits heute klassische Krankheitsklassifikationen wie etwa die ICD10, populationsbezogene genetische Screenings oder auch epidemiologische Modelle wie traditionelles HTA infrage. Das Public Health Genomics European Network (PHGEN) erfüllt diese Aufgabe der Translationsforschung in Europa.

Schlüsselwörter

Public Health Genomics Genomik Systembiologie Individualisierte Gesundheitsversorgung Public Health Genomics European Network 

Public health genomics

The future is built today!

Abstract

The task of public health genomics (PHG) has become a challenge for all healthcare systems having major implications for future research and policy strategies. The various stakeholders in public health play a key role in translating the implications of genomics such as deriving from systems biology, epigenomics, integrative genomics or genome-environmental interactions. Recent advances in systems biology indicate that specific cellular functions are infrequently carried out by single genes, but rather by groups of cellular components. This network-based research is already starting to change nosology as well as to challenge population-based genetic screening or epidemiological methods like HTA. This knowledge will not only enable clinical interventions but also health promotion messages and disease prevention programs to be targeted at susceptible individuals as well as subgroups of the population (personalized healthcare). So far there has been no systematic integration of genome-based knowledge and technologies into public health research, policy, and practice. Thus, the public health agenda demands a vision that reaches beyond the research horizon to arrive at application and health impact of these innovations. The Public Health Genomics European Network (PHGEN) aims to fulfill this task in Europe.

Keywords

Public health genomics Genomics Systems biology Personalized healthcare Public Health Genomics European Network PHGEN 

Literatur

  1. 1.
    Beskow LM, Khoury MJ, Baker TG, Thrasher JF (2001) The integration of genomics into public health. Research, policy and practice in the United States. Community Genet 4:2–11PubMedCrossRefGoogle Scholar
  2. 2.
    Brand A (2005) Public health and genetics – a dangerous combination? Eur J Public Health 15(2):114–116PubMedCrossRefGoogle Scholar
  3. 3.
    Brand A, Schröder P, Brand H, Zimmern R (2006) Getting ready for the future: integration of genomics into public health research, policy and practices in Europe and globally. Community Genet 9:67–71PubMedCrossRefGoogle Scholar
  4. 4.
    Holtzmann NA (2006) What role for public health in genetics and vice versa? Community Genet 9:8–20CrossRefGoogle Scholar
  5. 5.
    Brand A, Brand H, Schulte in den Bäumen T (2008) The impact of genetics and genomics on public health. Eur J Hum Genet 16(1):5–13PubMedCrossRefGoogle Scholar
  6. 6.
    World Health Organisation (WHO) (1998) Health promotion glossary. World Health Organisation, GenfGoogle Scholar
  7. 7.
    Schwartz FW (1998) Public Health: Zugang zu Gesundheit und Krankheit der Bevölkerung, Analysen für effektive und effiziente Lösungsansätze. In: Schwartz FW, Raspe H (Hrsg) Das Public Health Buch: Gesundheit und Gesundheitswesen. Urban und Schwarzenberg, München Wien BaltimoreGoogle Scholar
  8. 8.
    Bellagio Statement (2005) Genome-based research and population health. Report of an expert workshop held at the Rockefeller Foundation Study and Conference Center, Bellagio, Italy, 14–20Google Scholar
  9. 9.
    Khoury MJ, Gwinn M (2006) Letter to the editor: what role for public health in genetics and vice versa. Community Genetics. Community Genet 9:282PubMedCrossRefGoogle Scholar
  10. 10.
    Dabrock P, Schröder P (2006) Public Health Gen-Ethik. Bochum: Medizinethische Materialien (No 171)Google Scholar
  11. 11.
    Collins FS (1999) Shattuck lecture – medical and social consequences of the human genome project. N Engl J Med 341(1):28–37PubMedCrossRefGoogle Scholar
  12. 12.
    Lunshof JE, Chadwick R, Vorhaus DB, Church GM (2008) From genetic privacy to open consent. Nat Rev Genet 9(5):406–411PubMedCrossRefGoogle Scholar
  13. 13.
    McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348PubMedCrossRefGoogle Scholar
  14. 14.
    Mayeux R, Schupf N (1995) Apolipoprotein E and Alzheimer’s disease: the implications of progress in molecular medicine. Am J Public Health 85:1280–1284PubMedCrossRefGoogle Scholar
  15. 15.
    Khachaturian AS, Corcoran CD, Mayer LS et al (2004) Apolipoprotein E epsilon4 count affects age at onset of Alzheimer disease, but not lifetime susceptibility: The Cache County Study. Arch Gen Psychiatry 61:518–524PubMedCrossRefGoogle Scholar
  16. 16.
    Qiu C, Kivipelto M, Aguero-Torres H et al (2004) Risk and protective effects of the APOE gene towards Alzheimer’s disease in the Kungsholmen project: variation by age and sex. J Neurol Neurosurg Psychiatry 75:828–833PubMedCrossRefGoogle Scholar
  17. 17.
    Statement on use of apolipoprotein E testing for Alzheimer disease (1995) American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer Disease. JAMA 274:1627–1629CrossRefGoogle Scholar
  18. 18.
    Khoury MJ, Burke W, Thomson EJ (2000) Genetics and public health. A framework for the integration of human genetics into public health practice. In: Khoury MJ, Burke W, Thomson EJ (eds) Genetics and public health in the 21st Century. University Press, OxfordGoogle Scholar
  19. 19.
    McGinnis JM (2005) The public health system. In: Institute of Medicine. Implications of Genomics for Public Health – Workshop Summary. WashingtonGoogle Scholar
  20. 20.
    Burke W, Khoury MJ, Stewart A, Zimmern R (2006) The path from genome-based research to population health: development of an international public health genomic network. Genet Med 8(7):451–458PubMedCrossRefGoogle Scholar
  21. 21.
    Janssens AC (2006) Towards predictive genetic testing in predicting disease. Eur J Epidemiol 21(12):869–870PubMedCrossRefGoogle Scholar
  22. 22.
    Smith GD, Ebrahim S, Lewis S et al (2005) Genetic epidemiology and public health: hope, hype, and future prospects. Lancet 366:1484–1498CrossRefGoogle Scholar
  23. 23.
    Khoury MJ, Davis R, Gwinn M et al (2005) Do we need genomic research for the prevention of common diseases with environmental causes? Am J Epidemiol 161:799–805PubMedCrossRefGoogle Scholar
  24. 24.
    Bosch X (2006) Group ponders genomics and public health. JAMA 295(15):1762PubMedCrossRefGoogle Scholar
  25. 25.
    Colhoun HM, McKeigue PM, Davey Smith G (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361:865–872PubMedCrossRefGoogle Scholar
  26. 26.
    Ioannidis JP, Trikalinos TA, Ntzani EE, Contopoulos-Ioannidis DG (2003) Genetic associations in large versus small studies: an empirical assessment. Lancet 361:567–571PubMedCrossRefGoogle Scholar
  27. 27.
    Little J, Khoury MJ, Bradley L et al (2003) The human genome project is complete. How do we develop a handle for the pump? Am J Epidemiol 157:667–673PubMedCrossRefGoogle Scholar
  28. 28.
    Krawczak M, Nikolaus S, von Eberstein H et al (2006) PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet 9:55–61PubMedCrossRefGoogle Scholar
  29. 29.
    Wichmann HE, Gieger C (2007) Biobanken. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50(2):192–199CrossRefGoogle Scholar
  30. 30.
    Smith GD, Gwinn M, Ebrahim S et al (2006) Make it HuGE: human genome epidemiology reviews, population health, and the IJE. Int J Epidemiol. doi:10.1093/ije/dyl071Google Scholar
  31. 31.
    Nationales Genomforschungsnetz (NGFN) (aufgerufen im März 2009), http://www.ngfn.de/Google Scholar
  32. 32.
    Laurie G (2002) Genetic privacy. Cambridge University Press, Cambridge, pp 279–293Google Scholar
  33. 33.
    Burke W, Zimmern RL (2004) Ensuring the appropriate use of genetic tests. Nat Rev Genet (12):955–959Google Scholar
  34. 34.
    Brand A (2009) Integrative genomics, personal-genome tests and personalized healthcare: the future is being built today. European Journal of Human Genetics advance online publication, 4 March; doi:10.1038/ejhg.2009.32Google Scholar
  35. 35.
    Morrison PJ (2005) Insurance, unfair discrimination and genetic testing. Lancet 366:877–879PubMedCrossRefGoogle Scholar
  36. 36.
    Schröder P (2004) Gendiagnostische Gerechtigkeit. Eine ethische Studie über die Herausforderungen postnataler genetischer Prädiktion. Lit, MünsterGoogle Scholar
  37. 37.
    Janssens AC, Khoury MJ (2006) Predictive value of testing for multiple genetic variants in multifactorial diseases: implications for the discourse on ethical, legal and social issues. Ital J Public Health 3(3–4):35–45Google Scholar
  38. 38.
    Mielck A, Rogowski W (2007) Bedeutung der Genetik beim Thema „soziale Ungleichheit und Gesundheit“. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50(2):181–191CrossRefGoogle Scholar
  39. 39.
    Austin MA (2002) Ethical issues in human genome epidemiology: a case study based on The Japanese American Family Study in Seattle, Washington. Am J Epidemiol 155(7):585–592PubMedCrossRefGoogle Scholar
  40. 40.
    Powers M, Faden R (2006) Social justice: the moral foundations of public health and health policy. Oxford University Press, OxfordGoogle Scholar
  41. 41.
    Brand A, Brand H, Schröder P, Dabrock P (2005) Newborn screening programme and folic acid fortificatoin – two examples of policy making in public health genetics. In: Georgieva L, Burazeri G (eds) Health determinants in the scope of new public health: a handbook for teachers, researchers and health professionals. Hans Jacobs, Lage, pp 20–30Google Scholar
  42. 42.
    Brand H, Brand A (2007) Public Health Genomics. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 50:135–144CrossRefGoogle Scholar
  43. 43.
    Human Genetics Commission, UK Screening Committee (2005) Profiling the newborn: a prospective gene technology? March, LondonGoogle Scholar
  44. 44.
    Brand AM, Probst-Hensch NM (2007) Biobanking for epidemiological research and public health. Special issue „Tissue Banking“. Pathobiology 74:227–238PubMedCrossRefGoogle Scholar
  45. 45.
    Das Nationale Genomforschungsnetz (NGFN) (2006) Die Highlights. NGFN, BonnGoogle Scholar
  46. 46.
    McInerney JD (2006) Introduction. Community Genet 9:223CrossRefGoogle Scholar
  47. 47.
    Schmidtke J, Paul Y, Nippert I (2006) Education in medical genetics for physicians: Germany. Community Genet 9:235–239PubMedCrossRefGoogle Scholar
  48. 48.
    Adany R (2007) Genetic epidemiology in Europe – a detailed literature overview carried out in the SPHERE EC-Project. 2nd PHGEN Network meeting, Rome, 31st JanuaryGoogle Scholar
  49. 49.
    Brand A, Brand H (2006) Genetik in Gesundheitsforschung und Public Health. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 49:963–973CrossRefGoogle Scholar
  50. 50.
    Knoppers BM (2005) Of genomics and public health: Building public „goods“? CMAJ 173(19):1185–186PubMedGoogle Scholar
  51. 51.
    Ellsworth DL, O’Donnell CJ (2004) Emerging genomic technologies and analytic methods for population- and clinic-based research. In: Khoury MJ, Little J, Burke W (eds) Human genome epidemiology. A scientific foundation for using genetic information to improve health and prevent disease. Oxford New York Tokyo, Oxford University Press, pp 17–37Google Scholar
  52. 52.
    Barabasi AL (2007) Network medicine – from obesity to the „diseasome“. NEJM 357:1866–1868CrossRefGoogle Scholar
  53. 53.
    Motter AE, Gulbahoe N, Almaas E, Barabasi AL (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol 4:168PubMedCrossRefGoogle Scholar
  54. 54.
    Los Calzo J, Kohane I, Barabasi AL (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124Google Scholar
  55. 55.
    Prainsack B, Reardon J, Hindmarsh R et al (2008) Misdirected precaution. Nature 456(6):34–35PubMedCrossRefGoogle Scholar
  56. 56.
    Schulte in den Bäumen T (2006) Governance in genomics – a conceptual challenge for public health genomics Law. Ital J Public Health 4(3):46–52Google Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • A. Brand
    • 1
  • N. Rosenkötter
    • 1
  • T. Schulte in den Bäumen
    • 1
  • P. Schröder-Bäck
    • 2
  1. 1.Head of the Department of Social Medicine, Director of the European Centre for Public Health Genomics (ECPHG), Faculty of Health; Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtNiederlande
  2. 2.Department of International Health, Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtNiederlande

Personalised recommendations