„Qualitätssicherung beim Lymphozytentransformationstest“ – Addendum zum LTT-Papier der RKI-Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“

Mitteilung der Kommission „Methoden und Qualitätssicherung in der Umweltmedizin“
Empfehlung des Robert Koch-Instituts


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RKI-Kommission-Umweltmedizin (2002) Diagnostische Relevanz des Lymphozytentransformationstestes in der Umweltmedizin. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 45:745–749Google Scholar
  2. 2.
    Gerber BO, Pichler WJ (2004) Cellular mechanisms of T cell mediated drug hypersensitivity. Current Opinion Immunol 16:732–737CrossRefGoogle Scholar
  3. 3.
    Pichler WJ, Beeler A, Keller M, et al. (2006) Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 55:17–25PubMedCrossRefGoogle Scholar
  4. 4.
    Templeton DM (2004) Mechanisms of immunosensitization to metals (IUPAC Technical Report). Pure Appl Chem 76:1255–1268CrossRefGoogle Scholar
  5. 5.
    Lu L, Vollmer J, Moulon C, et al. (2003) Components of the ligand for a Ni++ reactive human T cell clone. J Experimental Med 197:567–574CrossRefGoogle Scholar
  6. 6.
    Scott BL, Wang Z, Marrone BL, Sauer NN (2003) Potential binding modes of beryllium with the class II major histocompatibility complex HLA-DP: a combined theoretical and structural database study. J Inorganic Biochemistry 94:5–13CrossRefGoogle Scholar
  7. 7.
    Amicosante M, Deubner D, Saltini C (2005) Role of the berylliosis-associated HLA-DPGlu69 supratypic variant in determining the response to beryllium in a blood T-cells beryllium-stimulated proliferation test. Sarcoidosis Vasc Diffuse Lung Dis 22:175–179PubMedGoogle Scholar
  8. 8.
    Thierse HJ, Gamerdinger K, Junkes C, et al. (2005) T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology 209:101–107PubMedCrossRefGoogle Scholar
  9. 9.
    von Baehr V, Mayer W, Liebenthal C, et al. (2001) Improving the in vitro antigen specific T cell proliferation assay: the use of interferon-alpha to elicit antigen specific stimulation and decrease bystander proliferation. J Immunol Methods 251:63–71PubMedCrossRefGoogle Scholar
  10. 10.
    Quah BJ, Warren HS, Parish CR (2007) Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nature Protocols 2:2049–2056PubMedCrossRefGoogle Scholar
  11. 11.
    Milovanova TN (2007) Comparative analysis between CFSE flow cytometric and tritiated thymidine incorporation tests for beryllium sensitivity. Cytometry 72:265–275PubMedCrossRefGoogle Scholar
  12. 12.
    Lindemann M, Bohmer J, Zabel M, Grosse-Wilde H (2003) ELISpot: a new tool for the detection of nickel sensitization. Clin Exp Allergy 33:992–998PubMedCrossRefGoogle Scholar
  13. 13.
    Bullens DM, Van Den Keybus C, Dilissen E, et al. (2004) Allergen-specific T cells from birch-pollen-allergic patients and healthy controls differ in T helper 2 cytokine and in interleukin-10 production. Clin Exp Allergy 34:879–887PubMedCrossRefGoogle Scholar
  14. 14.
    Burton MD, Papalia L, Eusebius NP, et al. (2002) Characterization of the human T cell response to rye grass pollen allergens Lol p 1 and Lol p 5. Allergy 57:1136–1144PubMedCrossRefGoogle Scholar
  15. 15.
    Rimaniol AC, Garcia G, Till SJ, et al. (2003) Evaluation of CD4+ T cells proliferating to grass pollen in seasonal allergic subjects by flow cytometry. Clin Exp Immunol 132:76–80CrossRefGoogle Scholar
  16. 16.
    Parga Lozano C, Marrugo Cano J, Hernandez Bonfante L (2004) Proliferative response of peripheral blood mononuclear cells to the recombinant allergen BtM of the Blomia tropicalis housedust mite. Allergol Immunopathol (Madr) 32:247–251CrossRefGoogle Scholar
  17. 17.
    Ohki O, Yokozeki H, Katayama I, Nishioka K (2001) Clinical characteristics of mite allergen specific-lymphocytes stimulation test-positive Japanese cases with adult type atopic dermatitis. J Dermatol Sci 26:25–35PubMedCrossRefGoogle Scholar
  18. 18.
    Prahl P, Sonderstrup Hansen G (1982) Lymphocyte responses to an aqueous extract from cow hair and dander. Investigations of asthmatics and normal controls with lymphocyte transformation tests. Allergy 37:155–160PubMedCrossRefGoogle Scholar
  19. 19.
    Pichler WJ, Tilch J (2004) The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 59:809–820PubMedCrossRefGoogle Scholar
  20. 20.
    Keizer TS, Sauer NN, McCleskey TM (2005) Beryllium binding at neutral pH: the importance of the Be-O-Be motif. J Inorganic Biochemistry 99:1174–1181CrossRefGoogle Scholar
  21. 21.
    Di Gioacchino M, Verna N, Di Giampaolo L, et al. (2007) Immunotoxicity and sensitizing capacity of metal compounds depend on speciation. Internat J Immunopathol Pharmacol 20:15–22Google Scholar
  22. 22.
    Ryan CA, Cruse LW, Skinner RA, et al. (2002) Examination of a vehicle for use with water soluble materials in the murine local lymph node assay. Food Chem Toxicol 40:1719–1725PubMedCrossRefGoogle Scholar
  23. 23.
    Brattig NW, Diao GJ, Berg PA (1988) The specificity of the lymphocyte transformation test in a patient with hypersensitivity reactions to pyrazolone compounds. A 10-week follow-up study before and after rechallenge. Eur J Clinical Pharmacol 35:39–45CrossRefGoogle Scholar
  24. 24.
    Hallab NJ (2004) Lymphocyte transformation testing for quantifying metal-implant-related hypersensitivity responses. Dermatitis 15:82–90PubMedGoogle Scholar
  25. 25.
    Nordlind K (1984) Lymphocyte transformation test in diagnosis of nickel allergy. A comparison between the separation of peripheral blood lymphocytes on Ficoll-Paque, Percoll or by gravity sedimentation. Int Arch Allergy Appl Immunol 73:151–154PubMedGoogle Scholar
  26. 26.
    Moed H, von Blomberg BM, Bruynzeel DP, et al. (2005) Regulation of nickel-induced T-cell responsiveness by CD4+CD25+ cells in contact allergic patients and healthy individuals. Contact Dermatitis 53:71–74PubMedCrossRefGoogle Scholar
  27. 27.
    Farris GM, Newman LS, Frome EL, et al. (2000) Detection of beryllium sensitivity using a flow cytometric lymphocyte proliferation test: the Immuno-Be-LPT. Toxicology 143:125–140PubMedCrossRefGoogle Scholar
  28. 28.
    Cirkovic Velickovic T, Thunberg S, Polovic N, et al. (2007) Low levels of endotoxin enhance allergen-stimulated proliferation and reduce the threshold for activation in human peripheral blood cells. Int Arch Allergy Immunol 146:1–10CrossRefGoogle Scholar
  29. 29.
    Moed H, von Blomberg M, Bruynzeel DP, et al. (2005) Improved detection of allergen-specific T-cell responses in allergic contact dermatitis through the addition of „cytokine cocktails“. Experimental Dermatol 14:634–640Google Scholar
  30. 30.
    Hawkins ED, Hommel M, Turner ML, et al. (2007) Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nature Protocols 2:2057–2067Google Scholar
  31. 31.
    Givan AL (2007) A flow cytometric assay for quantitation of rare antigen-specific T cells: using cell-tracking dyes to calculate precursor frequencies for proliferation. Immunological Investigations 36:563–580PubMedCrossRefGoogle Scholar
  32. 32.
    Cederbrant K, Anderson C, Andersson T, et al. (2003) Cytokine production, lymphocyte proliferation and T-cell receptor Vbeta expression in primary peripheral blood mononuclear cell cultures from nickel-allergic individuals. Int Arch Allergy Immunol 132:373–379CrossRefGoogle Scholar
  33. 33.
    Minang JT, Arestrom I, Zuber B, et al. (2006) Nickel-induced IL-10 down-regulates Th1- but not Th2-type cytokine responses to the contact allergen nickel. Clin Exp Immunol 143:494–502PubMedCrossRefGoogle Scholar
  34. 34.
    Merk HF (2005) Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines. Toxicology 209:217–220PubMedCrossRefGoogle Scholar
  35. 35.
    Jakobson E, Masjedi K, Ahlborg N, et al. (2002) Cytokine production in nickel-sensitized individuals analysed with enzyme-linked immunospot assay: possible implication for diagnosis. Br J Dermatol 147:442–449CrossRefGoogle Scholar
  36. 36.
    Klein R, Schwenk M, Templeton DM (2006) Cytokine profiles in human exposure to metals. Pure Appl Chem 78:2155–2168Google Scholar
  37. 37.
    RKI-Kommission-Umweltmedizin (2004) Bedeutung von Zytokinbestimmungen in der umweltmedizinischen Praxis. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:73–79Google Scholar
  38. 38.
    Minang JT, Arestrom I, Troye-Blomberg M, et al. (2006) Nickel, cobalt, chromium, palladium and gold induce a mixed Th1- and Th2-type cytokine response in vitro in subjects with contact allergy to the respective metals. Clin Exp Immunol 146:417–426PubMedCrossRefGoogle Scholar
  39. 39.
    Janetzki S, Cox JH, Oden N, Ferrari G (2005) Standardization and validation issues of the ELISPOT assay. Methods Molecular Biology (Clifton, NJ) 302:51–86Google Scholar
  40. 40.
    Spiewak R, Moed H, von Blomberg BM, et al. (2007) Allergic contact dermatitis to nickel: modified in vitro test protocols for better detection of allergen-specific response. Contact Dermatitis 56:63–69PubMedCrossRefGoogle Scholar
  41. 41.
    Stejskal VD, Forsbeck M, Cederbrant KE, Asteman O (1996) Mercury-specific lymphocytes: an indication of mercury allergy in man. J Clinical Immunol 16:31–40CrossRefGoogle Scholar
  42. 42.
    Yaqob A, Danersund A, Stejskal VD, et al. (2006) Metal-specific lymphocyte reactivity is down-regulated after dental metal replacement. Neuro Endocrinology Letters 27:189–197PubMedGoogle Scholar
  43. 43.
    Brehler R, Becker D, Merk H (1998) MELISA – in vitro test for detection of contact allergy? A comment by the German Contact Allergy Group. Hautarzt 49:418–419PubMedCrossRefGoogle Scholar
  44. 44.
    Koene RA (2005) The „memory lymphocyte immunostimulation assay“ (MELISA) is useless for the detection of metal allergy. Ned Tijdschr Geneeskd 149:2090–2092PubMedGoogle Scholar
  45. 45.
    Feilzer AJ (2005) The „memory lymphocyte immunostimulation assay“ (MELISA) is useless for the detection of metal allergy. Ned Tijdschr Geneeskd 149:2644–2645; author reply 2645PubMedGoogle Scholar
  46. 46.
    Bieger WP (2005) Der LTT in der MELISA-Version – nur bedingt geignet für Typ IV Metallreaktionen. J Lab Med 29:65–66Google Scholar
  47. 47.
    Klein R, Schwenk M, Heinrich-Ramm R, Templeton DM (2004) Diagnostic relevance of the lymphocyte transformation test for sensitization to beryllium and other metals (IUPAC Technical Report). Pure Appl Chem 76:1269–1281CrossRefGoogle Scholar
  48. 48.
    Thomas P, Bandl WD, Maier S, et al. (2006) Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyper-responsiveness in vitro: case report and review of the literature. Contact Dermatitis 55:199–202PubMedCrossRefGoogle Scholar
  49. 49.
    Thomas P, Schuh A, Ring J, Thomsen M (2008) [Orthopedic surgical implants and allergies: Joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology).]. Orthopäde 37:75–88PubMedCrossRefGoogle Scholar
  50. 50.
    Renz H, Becker WM, Bufe A, et al. (2002) In-vitro-Allergiediagnostik. Leitlinie der DGAI in Abstimmung mit der DDG. Allergo J 11:492–506Google Scholar
  51. 51.
    Przybilla B, Aberer W, Bircher AJ, et al. (2008) Allergological approach to drug hypersensitivity reactions. J Dtsch Dermatol Ges 6:240–243PubMedCrossRefGoogle Scholar
  52. 52.
    Ott H, Baron J, Merk HF (2006) In vitro allergy testing. Hautarzt 57:502, 504–508PubMedCrossRefGoogle Scholar
  53. 53.
    Wolf R, Davidovici B, Marcos B, Orion E (2005) Lymphocyte transformation test in patients with allergic contact dermatitis. Contact Dermatitis 53:245PubMedCrossRefGoogle Scholar
  54. 54.
    Bartram F, Höhne L, von Baehr V, et al. (2007) Umweltmedizinischer Anamnesepfad in der Zahnmedizin/Umwelt-ZahnMedizin. Empfehlungen des Arbeitskreises Zahnmedizin des Deutschen Berufsverbandes der Umweltmediziner e.V. Umwelt Medizin Gesellschaft 20:89–98Google Scholar
  55. 55.
    Cher DJ, Deubner DC, Kelsh MA, et al. (2006) Assessment of the beryllium lymphocyte proliferation test using statistical process control. Inhalation Toxicol 18:901–910CrossRefGoogle Scholar
  56. 56.
    von Baehr V, Hermes A, von Baehr R, et al. (2005) Allergoid-specific T-cell reaction as a measure of the immunological response to specific immunotherapy (SIT) with a Th1-adjuvanted allergy vaccine. J Investig Allergol Clin Immunol 15:234–241PubMedGoogle Scholar
  57. 57.
    Bartram F, Donate HP, Müller KE, et al. (2006) Bedeutung von Epikutantest und Lymphozytentransformationstest für die Diagnostik von Typ IV-Sensibilisierungen. Umwelt Medizin Gesellschaft 19:295–299Google Scholar
  58. 58.
    von Baehr V (2007) Zum aktuellen Stand der Labordiagnostik für die ZahnMedizin. Umwelt Medizin Gesellschaft 20:99–105Google Scholar
  59. 59.
    Bartram F, Donate HP, Müller KE, et al. (2006) Significance of the patch test and the lymphocyte transformation test in the diagnostics of type IV sensitization. J Lab Med 30:101–106Google Scholar
  60. 60.
    Valentine-Thon E, Muller KE, Guzzi G, et al. (2006) LTT-MELISA(R) is clinically relevant for detecting and monitoring metal sensitivity. Neuro Endocrinol Letters 27(Suppl 1):17–24Google Scholar
  61. 61.
    Stejskal V (2006) The „memory lymphocyte immunostimulation assay“ (MELISA) is useless for the detection of metal allergy. Ned Tijdschr Geneeskd 150:520; author reply 520–521PubMedGoogle Scholar
  62. 62.
    Muller KE, Valentine-Thon E (2006) Hypersensitivity to titanium: clinical and laboratory evidence. Neuro Endocrinol Letters 27(Suppl 1):31–35Google Scholar
  63. 63.
    Donovan EP, Kolanz ME, Galbraith DA, et al. (2007) Performance of the beryllium blood lymphocyte proliferation test based on a long-term occupational surveillance program. Internat Arch Occupational Environmental Health 81:165–178CrossRefGoogle Scholar
  64. 64.
    Maier LA (2001) Beryllium health effects in the era of the beryllium lymphocyte proliferation test. Applied Occupational Environmental Hygiene 16:514–520CrossRefGoogle Scholar
  65. 65.
    Merk HF (2005) Lymphocyte transformation test as a diagnostic test in allergic contact dermatitis. Contact Dermatitis 53:246PubMedCrossRefGoogle Scholar
  66. 66.
    Cederbrant K, Hultman P (2000) Characterization of mercuric mercury (Hg2+)-induced lymphoblasts from patients with mercury allergy and from healthy subjects. Clin Exp Immunol 121:23–30PubMedCrossRefGoogle Scholar
  67. 67.
    Kohler W, Linde K, Halbach S, et al. (2007) Prognos in the diagnosis of amalgam hypersensitivity a diagnostic case-control study. Forschende Komplementarmedizin (2006) 14:18–24PubMedCrossRefGoogle Scholar
  68. 68.
    RKI-Kommission-Umweltmedizin (2001) Grundsätze der Bewertung von umweltmedizinischen Methoden. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 44:519–522Google Scholar
  69. 69.
    Hallab NJ, Anderson S, Stafford T, et al. (2005) Lymphocyte responses in patients with total hip arthroplasty. J Orthop Res 23:384–391PubMedCrossRefGoogle Scholar
  70. 70.
    Hallab NJ, Caicedo M, Finnegan A, Jacobs JJ (2008) Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty. J Orthopaedic Surg Res 3:6CrossRefGoogle Scholar
  71. 71.
    Lindemann M, Rietschel F, Zabel M, Grosse-Wilde H (2008) Detection of chromium allergy by cellular in vitro methods. Clin Exp Allergy (in press)Google Scholar
  72. 72.
    Rustemeyer T, von Blomberg BM, van Hoogstraten IM, et al. (2004) Analysis of effector and regulatory immune reactivity to nickel. Clin Exp Allergy 34:1458–1466PubMedCrossRefGoogle Scholar
  73. 73.
    Cederbrant K, Gunnarsson LG, Marcusson JA (2000) Mercury intolerance and lymphocyte transformation test with nickel sulfate, palladium chloride, mercuric chloride, and gold sodium thiosulfate. Environmental Res 84:140–144CrossRefGoogle Scholar
  74. 74.
    Christiansen J, Farm G, Eid-Forest R, et al. (2006) Interferon-gamma secreted from peripheral blood mononuclear cells as a possible diagnostic marker for allergic contact dermatitis to gold. Contact Dermatitis 55:101–112Google Scholar
  75. 75.
    Borak J, Woolf SH, Fields CA (2006) Use of beryllium lymphocyte proliferation testing for screening of asymptomatic individuals: an evidence-based assessment. J Occupational Environmental Med/American College of Occupational and Environmental Medicine 48:937–947Google Scholar
  76. 76.
    Stange AW, Furman FJ, Hilmas DE (2004) The beryllium lymphocyte proliferation test: relevant issues in beryllium health surveillance. Am J Industrial Med 46:453–462CrossRefGoogle Scholar
  77. 77.
    Farrer DG, Hueber SM, McCabe MJ Jr (2005) Lead enhances CD4+ T cell proliferation indirectly by targeting antigen presenting cells and modulating antigen-specific interactions. Toxicol Applied Pharmacol 207:125–137CrossRefGoogle Scholar
  78. 78.
    Carey JB, Allshire A, van Pelt FN (2006) Immune modulation by cadmium and lead in the acute reporter antigen-popliteal lymph node assay. Toxicol Sci 91:113–122CrossRefGoogle Scholar
  79. 79.
    Sieben S, Hertl M, Al Masaoudi T, et al. (2001) Characterization of T cell responses to fragrances. Toxicol Applied Pharmacol 172:172–178CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Personalised recommendations