Humane embryonale Stammzellen im Kontext internationaler Forschungsaktivitäten

Leitthema: Forschung mit humanen embryonalen Stammzellen

Zusammenfassung

Forschung an pluripotenten humanen embryonalen Stamm (hES)-Zellen ist ein rasch wachsendes Wissenschaftsgebiet. Aufgrund der Herkunft des Zellmaterials aus frühen menschlichen Embryonen wurden alternative Verfahren zur Gewinnung von pluripotenten Zellen entwickelt. Der Beitrag stellt einige dieser Strategien vor und behandelt darüber hinaus die internationalen Bestrebungen, einheitliche Standards für die Kultivierung, Charakterisierung und Lagerung von hES-Zellen zu etablieren. Ferner werden die weltweiten Tendenzen zur Bildung von Netzwerken auf dem Gebiet der Stammzellforschung sowie Bestrebungen zur Harmonisierung ethischer Standards bei der Arbeit mit hES-Zellen aufgezeigt. Schließlich werden Perspektiven der Verwendung von hES-Zellen in der pharmakologisch-toxikologischen Forschung sowie jüngste Ergebnisse tierexperimenteller Studien mit hES-Zellen diskutiert.

Schlüsselwörter

Humane embryonale Stammzellen hES-Zellen Charakterisierung Forschungsnetzwerke Anwendung 

Human embryonic stem cells within the context of international research activity

Abstract

Research involving pluripotent human embryonic stem cells (hESCs) is a rapidly growing field of science. Since hESCs originate from early human embryos, alternative methods for producing pluripotent cells have been developed. This article introduces some of those strategies and, in addition, covers international efforts to establish consistent international standards for cultivation, characterization and preservation of hESCs. Furthermore, global trends to form networks in the field of stem cell research as well as endeavors to harmonize ethical standards for hESC research are presented. Finally, potential applications of hESCs in the field of pharmacology/toxicology are discussed as well as recent results of animal studies using hESCs.

Keywords

Human embryonic stem cells hESCs characterization research networks application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Sience 282:1145–1147Google Scholar
  2. 2.
    Löser P, Wobus MA (2007) Aktuelle Entwicklungen in der Forschung mit humanen embryonalen Stammzellen. Naturwiss Rundschau 60:229–241Google Scholar
  3. 3.
    Green RM (2007) Can we develop ethically universal embryonic stem-cell lines? Nat Rev Genet 8:480–485PubMedCrossRefGoogle Scholar
  4. 4.
    Chung Y, Klimanskaya I, Becker S, et al. (2008) Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2:113–117PubMedCrossRefGoogle Scholar
  5. 5.
    Peura TT, Bosman A, Stojanov T (2007) Derivation of human embryonic stem cell lines. Theriogenology 67:32–42PubMedCrossRefGoogle Scholar
  6. 6.
    Peura T, Bosman A, Chami O, et al. (2008) Karyotypically normal and abnormal human embryonic stem cell lines derived from PGD-analyzed embryos. Cloning Stem Cells 10:Vorab-Publikation onlineGoogle Scholar
  7. 7.
    Munné S, Velilla E, Colls PM, et al. (2005) Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril 84:1328–1334PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang X, Stojkovic P, Przyborski S, Cooke M (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676PubMedCrossRefGoogle Scholar
  9. 9.
    Landry DW, Zucker HA (2004) Embryonic death and the creation of human embryonic stem cells. J Clin Invest 114:1184–1186PubMedGoogle Scholar
  10. 10.
    Ben-Yosef D, Malcov M, Eiges R (2008) PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Mol Cell Endocrinol 282:153–158PubMedCrossRefGoogle Scholar
  11. 11.
    Eiges R, Urbach A, Malcov M, et al. (2007) Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cells 1:568–577CrossRefGoogle Scholar
  12. 12.
    Ben-Nun IF, Benvenisty N (2006) Human embryonic stem cells as a cellular model for human disorders. Mol Cell Endocrinol 252:154–159CrossRefGoogle Scholar
  13. 13.
    Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321PubMedCrossRefGoogle Scholar
  14. 14.
    Wilmut I, Schnieke AE, McWhir J, et al. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  15. 15.
    Lanza RP, Cibelli JB, West MD (1999) Human therapeutic cloning. Nat Med 5:975–977PubMedCrossRefGoogle Scholar
  16. 16.
    French AJ, Adams CA, Anderson LS, et al. (2008) Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26:485–493PubMedCrossRefGoogle Scholar
  17. 17.
    Hurlbut WB (2004) Altered nuclear transfer as a morally acceptable means for the procurement of human embryonic stem cells commissioned working paper. http://www.bioethics.gov/background/hurlbut.htmlGoogle Scholar
  18. 18.
    Meissner A, Jaenisch R (2005) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439:212–215PubMedCrossRefGoogle Scholar
  19. 19.
    Revazova ES, Turovets NA, Kochetkova OD, et al. (2007) Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9:432–449CrossRefGoogle Scholar
  20. 20.
    Kim K, Ng K, Rugg-Gunn PJ, Shieh JH (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352PubMedCrossRefGoogle Scholar
  21. 21.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  22. 22.
    Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  23. 23.
    Takahashi K, Tanabe K, Ohnuki M, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  24. 24.
    Wobus A (2008) Reversibilität des Entwicklungsstatus menschlicher Zellen. Naturwiss Rdsch 61:221–225Google Scholar
  25. 25.
    Gebler B, Schöler H (2008) Durchbruch in der Stammzellforschung? Die Reprogrammierung von Körperzellen zu pluripotenten Stammzellen. Übersicht und Ausblick. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz DOI 10.1007/s00103-008-0628-0Google Scholar
  26. 26.
    Adewumi O, Aflatoonian B, Ahrlund-Richter L, et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816PubMedCrossRefGoogle Scholar
  27. 27.
    Enver T, Soneji S, Joshi C, et al. (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Gen 14:3129–3140Google Scholar
  28. 28.
    Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA 105:4820–4825PubMedCrossRefGoogle Scholar
  29. 29.
    Shen Y, Matsuno Y, Fouse SD, et al. (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105:4709–4714PubMedCrossRefGoogle Scholar
  30. 30.
    Oh SK, Kim HS, Ahn HJ, et al. (2005) Derivation and Characterization of New Human Embryonic Stem Cell Lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23:211–219PubMedCrossRefGoogle Scholar
  31. 31.
    Chang KH, Nelson AM, Cao H, et al. (2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108:1515–1523PubMedCrossRefGoogle Scholar
  32. 32.
    Cowan CA, Klimanskaya I, McMahon J, et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356PubMedCrossRefGoogle Scholar
  33. 33.
    Osafune K, Caron L, Borowiak N, et al. (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315PubMedCrossRefGoogle Scholar
  34. 34.
    Yamanaka S, Li J, Kania G, et al. (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22PubMedCrossRefGoogle Scholar
  35. 35.
    Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:4535–4562CrossRefGoogle Scholar
  36. 36.
    Sato N, Meijer L, Skaltsounis L, et al. (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63PubMedCrossRefGoogle Scholar
  37. 37.
    Xu C, Rosler E, Jiang J, et al. (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323PubMedCrossRefGoogle Scholar
  38. 38.
    Beattie GM, Lopez AD, Bucay N, et al. (2005) Activin a maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495Google Scholar
  39. 39.
    Brons IG, Smithers LE, Trotter MW, et al. (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195PubMedCrossRefGoogle Scholar
  40. 40.
    Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678PubMedCrossRefGoogle Scholar
  41. 41.
    Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680PubMedCrossRefGoogle Scholar
  42. 42.
    Skottman H, Narkilahti S, Hovatta O (2007) Challenges and approaches to the culture of pluripotent human embryonic stem cells. Regen Med 2:265–273PubMedCrossRefGoogle Scholar
  43. 43.
    Ludwig TE, Levenstein ME, Jones JM, et al. (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187PubMedCrossRefGoogle Scholar
  44. 44.
    Crook JM, Peura TT, Kravets L, et al. (2007) The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell 1:490–494PubMedCrossRefGoogle Scholar
  45. 45.
    Deb KD, Sarda K (2008) Human embryonic stem cells: preclinical perspectives. J Translational Med 6:7CrossRefGoogle Scholar
  46. 46.
    Franklin SB, Hunt C, Cornwell G, et al. (2008) hESCCO: development of good practice models for hES cell derivation. Regen Med 3:105–116PubMedCrossRefGoogle Scholar
  47. 47.
    Améen C, Strehl R, Björquist P, et al. (2008) Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 65:54–80PubMedCrossRefGoogle Scholar
  48. 48.
    Rubin LL (2008) Stem cells and drug discovery: the beginning of a new era? Cell 132:549–552PubMedCrossRefGoogle Scholar
  49. 49.
    Adler S, Pellizzer C, Hareng L, et al. (2008) First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol in Vitro 22:200–211PubMedCrossRefGoogle Scholar
  50. 50.
    Sartipy P, Björquist P, Strehl R, Hyllner J (2007) The application of human embryonic stem cell technologies to drug discovery. Drug Discov Today 12:688–699PubMedCrossRefGoogle Scholar
  51. 51.
    Ek M, Söderdahl T, Küppers-Munther B, Edsbagge J (2007) Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 74:496–503PubMedCrossRefGoogle Scholar
  52. 52.
    Hay DC, Zhao D, Ross A, Mandalam R, et al. (2007) Direct differentiation of human embryonic stem cells to hepatocyte-like cells exhibiting functional activities. Cloning Stem Cells 9:51–62PubMedCrossRefGoogle Scholar
  53. 53.
    Agarwal S, Holton KL, Lanza R (2008) Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells published online 21.2.2008Google Scholar
  54. 54.
    Welt online, 19.5.2008, http://www.welt.de/welt_print/article2009292/Vorerst_keine_Therapie_mit_embryonalen_Stammzellen_in_den_USA.htmlGoogle Scholar
  55. 55.
    Baker M (2008) FDA to vet embryonic stem cells’ safety. Nature 452:670PubMedCrossRefGoogle Scholar
  56. 56.
    Pressemitteilung von Advanced Cell Technology vom 1.2.2008Google Scholar
  57. 57.
    Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts Trends. Biotechnol 25:24–32Google Scholar
  58. 58.
    Taylor CJ, Bolton EM, Pocock S, et al. (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025PubMedCrossRefGoogle Scholar
  59. 59.
    Boyd AS, Higashi Y, Wood KJ (2005) Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev 57:1944–1969PubMedCrossRefGoogle Scholar
  60. 60.
    Chidgey AP, Layton D, Trounson A, Boyd RL (2008) Tolerance strategies for stem-cell-based therapies. Nature 453:330–337PubMedCrossRefGoogle Scholar
  61. 61.
    Cho MS, Lee YE, Kim JY, et al. (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. PNAS 105:3392–3397PubMedCrossRefGoogle Scholar
  62. 62.
    Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cellderived neural stem cell line: functional engraftment in experimental stroke model. PLoS One, 3, E1644Google Scholar
  63. 63.
    Caspi O, Huber I, Kehat I, et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893PubMedCrossRefGoogle Scholar
  64. 64.
    Caspi O, Lesman A, Basevitch Y, et al. (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272PubMedCrossRefGoogle Scholar
  65. 65.
    Laflamme MA, Chen KY, Naumova AV, et al. (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedCrossRefGoogle Scholar
  66. 66.
    Kroon E, Martinson LA, Kadoya K, et al. (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452PubMedCrossRefGoogle Scholar
  67. 67.
    Lu SJ, Feng Q, Caballero S, Chen Y (2007) Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 4:501–509PubMedCrossRefGoogle Scholar
  68. 68.
    Lu B, Wang S, Girman S, et al. (2007) GMP-compliant Human RPE cells derived from embryonic stem cell Lines rescue visual function in a rat model for photoreceptor degeneration. Poster. http://www.advancedcell.com/file_download/225Google Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)GaterslebenBRD
  2. 2.Robert Koch-InstitutBerlinBRD
  3. 3.Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)GaterslebenBRD

Personalised recommendations