Arbobakterien (über Arthropoden übertragbare Bakterien)

Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit
Bekanntmachung Mitteilungen des Arbeitskreises Blut des Bundesministeriums für Gesundheit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Raoult D (2005) Introduction to Rickettsiosis and Ehrlichiosis. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2284–2287Google Scholar
  2. 2.
    Arbeitskreis Blut, Untergruppe „Bewertung Blutassoziierter Krankheitserreger“ (2005) Coxiella burnetii – Erreger des Q-(query) Fiebers. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:814–821Google Scholar
  3. 3.
    Houhamdi L, Lepidi H, Drancourt M, Raoult D (2006) Experimental model to evaluate the human body louse as a vector of plague. J Infect Dis 194:1589–1596PubMedCrossRefGoogle Scholar
  4. 4.
    Maeda K, Markowitz N, Hawley RC, et al. (1987) Human infection with Ehrlichia canis, a leukocytic Rickettsia. N Engl J Med 316:853–856PubMedCrossRefGoogle Scholar
  5. 5.
    Walker DH, Dumler JS (2005) Ehrlichia chaffeensis (human monocytotropic Ehrlichiosis), Anaplasma phagocytophilum (human granulocytotropic Anaplasmosis) and other Ehrlichiae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2310–2318Google Scholar
  6. 6.
    Hildebrandt A, Schmidt KH, Wilske B, et al. (2003) Prevalence of four species of Borrelia burgdorferi sensu lato and coinfection with Anaplasma phagocytophila in Ixodes ricinus ticks in central Germany. Eur J Clin Microbiol Infect Dis 22:364–367PubMedCrossRefGoogle Scholar
  7. 7.
    Wielinga PR, Gaasenbeek C, Fonville M, et al. (2006) Longitudinal analysis of tick densities and Borrelia, Anaplasma and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Envrion Microbiol 72:7594–7601CrossRefGoogle Scholar
  8. 8.
    Standaert SM, Yu T, Scott MA, et al. (2000) Primary isolation of Ehrlichia chaffeensis from patients with febrile illness: clinical and molecular characteristics. J Infect Dis 181:1082–1088PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson BE, Sumner JW, Dawson JE, et al. (1992) Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol 30:775–780PubMedGoogle Scholar
  10. 10.
    Standaert SM, Dawson JE, Schaffner W, et al. (1995) Ehrlichiosis in a golf oriented retirement community. N Engl J Med 333:420–425PubMedCrossRefGoogle Scholar
  11. 11.
    Brouqui P, Lecam C, Olson J, Raoult D (1994) Serologicc diagnosis of human monocytic Ehrlichiosis by immunoblot analysis. Clin Diag Lab Immunol 1:645–649Google Scholar
  12. 12.
    Dreher UM, Fuente JDL, Hofmann-Lehmann R, et al. (2005) Serologic cross-rectivity between Anaplasma marginale and Anaplasma phagocytophilum. Clin Diag Lab Immunol 12:1177–1183CrossRefGoogle Scholar
  13. 13.
    Trofe J, Reddy KS, Stratta RJ, et al. (2001) Human granulocytic ehrlichiosis in pancreas transplant recipients. Transpl Infect Dis 3:34–39PubMedCrossRefGoogle Scholar
  14. 14.
    Leiby DA, Chung AP, Cable RG, et al. (2002) Relationship between tick bites and the seroprevalence of Babesia microti and Anaplasma phagocytophila (previously Ehrlichia sp) in blood donors. Transfusion 42:1585–1591PubMedCrossRefGoogle Scholar
  15. 15.
    Fingerle V, Goodman JL, Johnson RC, et al. (1997) Human granulocytic ehrlichiosis in Southern Germany; increased seroprevalence in high risk groups. J Clin Microbiol 35:3244–3247PubMedGoogle Scholar
  16. 16.
    Fingerle V, Munderloh UG, Liegl G, Wilske B (1999) Coexsistence of ehrlichia of the phagocytophila group with Borrelia burgdorferi in Ixodes ricinus from Southern Germany. Med Microbiol Immuno 188:145–149CrossRefGoogle Scholar
  17. 17.
    Del Prete R, Fumarola D, Fumarola L, et al. (1999) Prevalence of antibodies to Bartonella henselae in patients with suspected cat scratch disease (CSD) in Italy. Eur J Epidemiol 15:583–587PubMedCrossRefGoogle Scholar
  18. 18.
    McGill S, Wesslen L, Hjelm E, et al. (2001) Serological and epidemiological analysis of the prevalence of B spp antibodies in Swedish elite orienteers 1992–93. Scand J Infect Dis 33:423–428PubMedCrossRefGoogle Scholar
  19. 19.
    Mallqui V, Speelmon EC, Verastegui M, et al. (2000) Sonicated diagnostic immunoblot for bartonellosis. Clin Diagn Lab Immunol 7:1–5PubMedGoogle Scholar
  20. 20.
    Handley SA, Regnery RL (2000) Differentiation of pathogenic Bartonella species by infrequent restriction site PCR. J Clin Microbiol 38:3010–3015PubMedGoogle Scholar
  21. 21.
    Kordick DL, Breitschwerdt EB (1997) Relapsing bacteriemia after blood transfusion of Bartonella henselae to cats. Am J Vet Res 58:492–497PubMedGoogle Scholar
  22. 22.
    Steere AC, Malawista SE, Snydman DR, et al. (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 20:7–17PubMedCrossRefGoogle Scholar
  23. 23.
    Bannwarth A (1941) Chronische lymphozytäre Menigitis, entzündliche Polyneuritis und „Rheumatismus“. Arch Psychiatr Nervenkrankh 111:284–376CrossRefGoogle Scholar
  24. 24.
    Herxheimer K, Hartmann K (1902) Über Acrodermatitis chronica atrophicans. Arch Dermatol Syph 61:57–76, 255–300CrossRefGoogle Scholar
  25. 25.
    Afzelius A (1910) Bericht der Verhandlungen der Dermatologischen Gesellschaft zu Stockholm am 16. Dezember 1909. Arch Dermatol Syph 101:405Google Scholar
  26. 26.
    Fraser CM, Casjens S, Huang WM, et al. (1997) Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390:580–586PubMedCrossRefGoogle Scholar
  27. 27.
    Schulte-Spechtel U, Lehnert G, Liegl G, et al. (2003) Significant improvement of the recombinant Borrelia-specific immunoglobulin G immunoblot test by addition of VlsE and a DbpA homologue derived from Borrelia garinii for diagnosis of early neuroborreliosis. J Clin Microbiol 41:1299–1303PubMedCrossRefGoogle Scholar
  28. 28.
    Ramamoorthi N, Narasimhan S, Pal U, et al. (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577PubMedCrossRefGoogle Scholar
  29. 29.
    Wilske B, Schriefer ME (2003) Borrelia. In: Murray PR, Baron EJ, Jorgensen JH et al. (eds) Manual of Clin Micriobiol, 8th edn. ASM press, pp 937–954Google Scholar
  30. 30.
    Steere AC (1989) Lyme disease. N Engl J Med 321:586–596PubMedCrossRefGoogle Scholar
  31. 31.
    Wilske B, Münchhoff P, Schierz G, et al. (1985) Zur Epidemiologie der Borrelia burgdorferi-Infektion. Münch Med Wochenschr 127:171–172Google Scholar
  32. 32.
    Tomao P, Ciceroni L, Ovidio MCD, et al. (2005) Prevalence and incidence of antibodies to Borrelia burgdorferi and to tick-borne encephalitis virus in agricultural and forestry workers from Tuscany, Italy. Eur J Clin Microbiol Infect 24:457–463CrossRefGoogle Scholar
  33. 33.
    Lledo L, Gegundez MI, Saz JV, Beltran M (2004) Screening of the prevalence of antibodies to Borrelia burgdorferi in Madrid province, Spain. Eur J Epidemiol 19:471–472PubMedCrossRefGoogle Scholar
  34. 34.
    Hauser U, Lehnert G, Lobentanzer R, Wilske B (1997) Interpretation criteria for standardized western blots for three European species of Borrelia burgdorferi sensu lato. J Clin Microbiol 35:1433–1444PubMedGoogle Scholar
  35. 35.
    Nocton JJ, Dressler F, Rutledge BJ, et al. (1994) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med 330:229–234PubMedCrossRefGoogle Scholar
  36. 36.
    Vasiliu V, Herzer D, Rössler D, et al. (1998) Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an OspA type specific PCR in synovial fluid from patients with Lyme arthritis. Med Microbiol Immunol 187:97–102PubMedCrossRefGoogle Scholar
  37. 37.
    Nadal D, Wunderli W, Briner H, Hansen K (1989) Prevalence of antibodies to Borrelia burgdorferi in forestry workers and blood donors from the same region in Switzerland. Eur J Clin Microbiol Infect Dis 8:992–995PubMedCrossRefGoogle Scholar
  38. 38.
    Bohme M, Schwenecke S, Fuchs E, et al. (1992) Screening of blood donors and recipients for Borrelia antibodies: no evidence of B. burgdorferi infection transmitted by transfusion. Infusionsther Transfusionsmed 19:204–207PubMedGoogle Scholar
  39. 39.
    Weiland T, Kühnl P, Laufs R, Heesemann J (1992) Prevalence of Borrelia burgdorferi antibodies in Hamburg blood donors. Beitr Infusionsther 30:92–95PubMedGoogle Scholar
  40. 40.
    Johnson SE, Swaminathan B, Moore P, et al. (1990) Borrelia burgdorferi: survival in experimentally infected human blood processed for transfusion. J Infect Dis 162:557–559PubMedGoogle Scholar
  41. 41.
    Nadelman RB, Sherer C, Mack L, et al. (1990) Survival of Borrelia burgdorferi in human blood stored under blood banking conditions. Transfusion 30:298–301PubMedCrossRefGoogle Scholar
  42. 42.
    Gerber MA, Shapiro ED, Krause PJ, et al. (1994) The risk of acquiring Lyme disease or babesiosis from a blood transfusion. J Infect Dis 170:231–234PubMedGoogle Scholar
  43. 43.
    McCoy GM, Chapin CW (1912) Bacterium tularense the cause of a plaque-like disease of rodents. US Public Health Hosp Bull 53:17–23Google Scholar
  44. 44.
    Francis E (1921) The occurence of tularemia in nature as a disease of man. US Public Health Rep 36:1731–1738Google Scholar
  45. 45.
    Penn RL (2005) Francisella tularensis (Tularemia). In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2674–2685Google Scholar
  46. 46.
    Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15:631–646PubMedCrossRefGoogle Scholar
  47. 47.
    Petersen JM, Schriefer ME (2005) Tularemia: emergence/re-emergence. Vet Res 36:455–467PubMedCrossRefGoogle Scholar
  48. 48.
    Barns SM, Grow CC, Okinaka RT, et al. (2005) Detection of diverse new Francisella like bacteria in environmental samples. Appl Environ Micrbiol 71:5494–5500CrossRefGoogle Scholar
  49. 49.
    Titball RW, Sjöstedt A (2003) Francisella tularensis: an overview. ASM News 11:558–563Google Scholar
  50. 50.
    Berdal BP, Mehl R, Meidell NK, et al. (1996) Field investigations of tularemia in Norway. FEMS Immunol Med Microbiol 13:191–195PubMedCrossRefGoogle Scholar
  51. 51.
    Brotcke A, Weiss DS, Kim CC, et al. (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74:6642–6655PubMedCrossRefGoogle Scholar
  52. 52.
    Staples JE, Kubota KA, Chalcraft LG, et al. (2006) Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis 12:1113–1118PubMedGoogle Scholar
  53. 53.
    Hall JD, Craven RR, Fuller JR, et al. (2007) Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun 75:1034–1039PubMedCrossRefGoogle Scholar
  54. 54.
    Gurycova D, Kocianova E, Vyrostekova V, Rehacek J (1995) Prevealence of ticks infected with Francisella tularensis in natural foci of tularemia in western Slovakia. Eur J Epidemiol 11:469–474PubMedCrossRefGoogle Scholar
  55. 55.
    Hubalek Z, Sixl W, Halouzka J (1998) Francisella tularensis in Dermatocenter reticularis ticks from the Czech Republic and Austria. Wien Klin Wochenschr 110:909–910PubMedGoogle Scholar
  56. 56.
    Robert Koch-Institut (2005) Tularämie: Ausbruch unter Teilnehmern einer Hasen-Treibjagd im Landkreis Darmstadt-Dieburg, 2005. Epidemiol Bull 50:465–466Google Scholar
  57. 57.
    Tärnvik A (1989) Nature of protective immunity to Francisella tularensis. Rev Infect Dis 11:440–451PubMedGoogle Scholar
  58. 58.
    Porsch-Ozcurumez M, Kischel N, Priebe H, et al. (2004) Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin Diagn Lab Immunol 11:1008–1015PubMedCrossRefGoogle Scholar
  59. 59.
    Bevanger L, Maeland JA, Naess AI (1989) Competitive enzyme immunoassay for antibodies to a 43,000 molecular weight Francisella tularensis outer membrane protein for the diagnosis of tularemia. J Clin Microbiol 27:922–926PubMedGoogle Scholar
  60. 60.
    Fulop M, Leslie D, Titball R (1996) A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction. Am J Trop Med Hyg 54:364–366PubMedGoogle Scholar
  61. 61.
    Grunow RW, Spletstoesser W, McDonald S, et al. (2000) Detection of Francisella tularensis in biologiocal specimens using a capture enzyme-linked immunosorbent assay, an immunochromatochraphic handheld assay, and a PCR. Clin Diagn Lab Immunol 7:86–90PubMedGoogle Scholar
  62. 62.
    Broekhuijsen M, Larsson P, Johansson A, et al. (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol 41:2924–2931PubMedCrossRefGoogle Scholar
  63. 63.
    Higgins JA, Hubalek Z, Halouzka J, et al. (2000) Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reation. Am J Trop Med Hyg 62:310–318PubMedGoogle Scholar
  64. 64.
    Khoury JA, Bohl DL, Hersh MJ, et al. (2005) Tularemia in a kidney transplant recipient: an unsuspected case and literature review. Am J Kidney Dis 45:926–929PubMedCrossRefGoogle Scholar
  65. 65.
    Vishwanath S (1991) Antigenic relationships among the rickettsiae of the spotted fever and typhus group. FEMS Microbiol Lett 81:341–344CrossRefGoogle Scholar
  66. 66.
    McDade JE, Shepard CC, Redus MA, et al. (1980) Evidence of Rickettsia prowazekii infections in the United States. Am J Trop Med Hyg 29:277–284PubMedGoogle Scholar
  67. 67.
    Brill NE (1910) An acute infectious disease of unknown origin. Am J Med Sci 139:484–502CrossRefGoogle Scholar
  68. 68.
    Zinsser H (1934) Varieties of typhus virus and the epidemiology of the American form of European typhus fever (Brill's disease). Am J Hyg 20:513–532Google Scholar
  69. 69.
    Dupont HT, Brouqui P, Faugere B, Raoult D (1995) Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsai typhi in seven African countries. Clin Infect Dis 21:1126–1133PubMedGoogle Scholar
  70. 70.
    Schriefer ME, Sacci JB, Dumler JS, et al. (1994) Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J Clin Microbiol 32:949–954PubMedGoogle Scholar
  71. 71.
    Tzianabos T, Anderson BE, McDade JE (1989) Detection of rickettsia rickettsii DNA in clinical specimens by using polymerase chain reaction technology. J Clin Microbiol 27:2866–2868PubMedGoogle Scholar
  72. 72.
    Raoult D, Toga B, Chaudet H, Chiche-Portiche C (1987) Rickettsial antibody in southern France: antibodies to Rickettsia conorii and Coxiella burnetii among urban, suburban and semi-rural blood donors. Trans Roy Soc Trop Med Hyg 81:80–81PubMedCrossRefGoogle Scholar
  73. 73.
    Tay ST, Kamalanathan M, Rohani MY (2003) Antibody prevalence of Orienta tsutsugamushi, Rickettsia typhi and TT118 spotted fever group rickettsiae among Malaysian blood donors and febrile patients in the urban areas. Southeast Asian J Trop Med Public Health 34:165–170PubMedGoogle Scholar
  74. 74.
    Daniel SA, Manika K, Arvanmdou M, Antoniadis A (2002) Prevalence of Rickettsia conorii and Rickettsia typhi infections in the population of Northern Greece. Am J Trop Med Hyg 66:76–79PubMedGoogle Scholar
  75. 75.
    Lledo L, Gegundez MI, Saz JV, Beltran M (2001) Prevalence of antibodies to Rickettsia typhi in an area of the center of Spain. Eur J Epidemiol 17:927–928PubMedCrossRefGoogle Scholar
  76. 76.
    Ruiz-Beltran R, Herrero-Herrero JI, Martin-Sanchez AM, Martin-Gonzales JA (1990) Prevalence of antibodies to Rickettsia conorii, Coxiella burnetii and Rickettsia typhi in Salamanca Province (Spain). Serosurvey in the human population. Eur J Epidemiol 6:293–299PubMedCrossRefGoogle Scholar
  77. 77.
    Wells GM, Woodward TE, Fiset P, Hornick BB (1978) Rocky mountain spotted fever caused by blood transfusion. J Am Med Ass 239:2763–2765CrossRefGoogle Scholar
  78. 78.
    Arbeitskreis Blut, Untergruppe „Bewertung Blutassoziierter Krankheitserreger“ (1999) Yersinia enterocolitica. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 42:613–621Google Scholar
  79. 79.
    Butler T, Dennis DT (2005) Yersinia species, including plague. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseaeses, 6th edn. Elsevier, Philadelphia, pp 2691–2708Google Scholar
  80. 80.
    Prentice MB, Rahalison L (2007) Plague. Lancet 369:1196–1207PubMedCrossRefGoogle Scholar
  81. 81.
    Perry RD, FetherstonJD (1997) Yersinia pestis – ethiologic agent of plaque. Clin Micrbiol Rev 10:35–66Google Scholar
  82. 82.
    Saikh KU, Kissner TL, Dyas B, et al. (2006) Human cytolytic T cell recognition of Yersinia pestis virulence proteins that target innate immune response. J Infect Dis 194:1753–1760PubMedCrossRefGoogle Scholar
  83. 83.
    Chalton DA, Musson JA, Smith HF, et al. (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74:6624–6631PubMedCrossRefGoogle Scholar
  84. 84.
    Chase CJ, Ulrich MP, Wasieloski LP, et al. (2005) Real time PCR assays targeting a unique chromosomal sequence of Yersinia pestis. Clin Chem 51:1778–1785PubMedCrossRefGoogle Scholar
  85. 85.
    Loiez C, Herwegh S, Wallet F, et al. (2003) Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol 41:4873–4875PubMedCrossRefGoogle Scholar
  86. 86.
    Tomaso H, Reisinger EC, AlDahouk S, et al. (2003) Rapid detection of Rapid detection of ersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol Med Microbiol 38:117–126PubMedCrossRefGoogle Scholar
  87. 87.
    Hansmann Y, DeMartino S, Piémont Y, et al. (2005) Diagnosis of cat scratch disease with detection of Bartonella henselae by PCR: a study of patients with lymph node enlargement. J Clin Microbiol 43:3800–3806PubMedCrossRefGoogle Scholar
  88. 88.
    Simon MM, Birkner N, Lamers R, Wallich R (2006) Outer surface lipoproteins of Borrelia burgdorferi: role in virulence, persistence of the pathogen and protection against Lyme disease. In: Cabello FC, Hulinska D, Godfrey HP (eds) Molecular biology of spirochetes. Nato Science Series, I: Life and Behavioural Sciences 373:383–392 IOS Press, Fairfax, VAUSAGoogle Scholar
  89. 89.
    Hepbrun MJ, Purcell BK, Lawler JV, et al. (2006) Live vaccine strain Francisella tularensis is detectable at the inoculation site but not in blood after vaccination against tularaemia. Clin Infect Dis 43:711–716CrossRefGoogle Scholar
  90. 90.
    Pechous R, Celli J, Penoske R, et al. (2006) Construction and characterization of an attenuated prurine auxotroph in a Francisella tularensis live vaccine strain. Infect Immun 74:4452–4461PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Personalised recommendations