Advertisement

Psychoneuroimmunology. The relationship between stress, immune system and health

  • K.-H. SchulzEmail author
  • S. Gold
Leitthema: Körper, Psyche, Spiritualität

Abstract

Interdisciplinary psychoneuroimmunological (PNI) research increasingly demonstrates clinically relevant interrelations between psychological stressors and the onset or progression of chronic diseases. Disturbances of the bi-directional interaction between the nervous system, the immune system and the endocrine system have been hypothesized to be implicated in several diseases. Here, we review evidence from psychoneuroimmunology within the theoretical framework of allostatic load to conceptualize some of these associations. Interdisciplinary PNI research investigating the importance of psychological stress for the higher incidence of infections, decreased responses to vaccinations and delayed wound healing is reviewed. Furthermore, the literature supporting similar associations with regard to progression of oncological diseases and autoimmune disorders is reviewed with a focus on breast cancer and multiple sclerosis. The accumulating evidence regarding the importance of neuroendocrine-immune interaction in these diseases may thus lead to novel insights into pathogenetic mechanisms and could contribute to the development of novel preventive and therapeutic strategies.

Keywords

Stress Psychoneuroimmunology Infectious diseases Vaccinations Breast cancer Multiple sclerosis Wound healing 

Psychische Belastung, Immunfunktionen und Krankheitsentwicklungen Die psychoneuroimmunologische Perspektive

Zusammenfassung

Psychoneuroimmunologische Forschung als interdisziplinäre Wissenschaft zeigt, dass klinisch relevante Zusammenhänge zwischen psychischer Belastung und Krankheitsentwicklung bestehen. Im vorliegenden Beitrag werden die wechselseitige Kommunikation der primären informationsverarbeitenden und übermittelnden körperlichen Systeme (Nerven-, Hormon- und Immunsystem) sowie deren Beeinträchtigung durch chronische Stressoren gemäß dem Konzept von Allostatic Load vorgestellt sowie die erhöhte Infektanfälligkeit, die verminderte Responserate nach Impfungen und die Verlängerung der Wundheilung unter psychischer Belastung beschrieben. Forschungsergebnisse zeigen, dass eine Dysregulation der Stressreaktionssysteme bei Brustkrebs und anderen onkologischen Erkrankungen sowie bei multipler Sklerose für deren Ausprägung oder Progression bedeutsam sein könnte. Entsprechende Zusammenhänge können heute als gut belegt gelten und sollten daher in Präventions- und Therapiekonzepten Berücksichtigung finden.

Schlüsselwörter

Stress Psychoneuroimmunologie Infektionserkrankungen Impfungen Brustkrebs Multiple Sklerose Wundheilung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338:171–179PubMedGoogle Scholar
  2. 2.
    McEwen BS (2004) Protection and damage from acute and chronic stress. Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7PubMedGoogle Scholar
  3. 3.
    Koob GF, LeMoal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129PubMedGoogle Scholar
  4. 4.
    Schulkin J (1999) Corticotropin-releasing hormone signals adversity in both the placenta and the brain: regulation by glucocorticoids and allostatic overload. J Endocrinol 161:349–356PubMedGoogle Scholar
  5. 5.
    McEwen BS, Seeman T (1999) Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann NY Acad Sci 896:30–47PubMedGoogle Scholar
  6. 6.
    McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Hormones Behavior 43:2–15Google Scholar
  7. 7.
    McEwen BS, Wingfield JC (2003) Response to commentaries on the concept of allostasis. Hormones Behavior 43:28–30Google Scholar
  8. 8.
    Kaplan JR, Petterson K, Manuck SB, Olsson G (1991) Role of sympatho-adrenal medullary activation in the initiation and progression of atheriosclerosis. Circulation 84 [Suppl VI]:VI23–VI32PubMedGoogle Scholar
  9. 9.
    Lupien SJ, McEwen BS (1997) The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev 24:1–27PubMedGoogle Scholar
  10. 10.
    Sanders VM, Kasprowicz DJ, Kohm AP, Swanson MA (2001) Neurotransmitter receptors on lymphocytes and other lymphoid cells. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol 1, 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 161–196Google Scholar
  11. 11.
    Schulz KH, Schulz H (1997) Prolaktin und Immunfunktionen. In: Schulz KH, Kugler J, Schedlowski M (Hrsg) Psychoneuroimmunologie. Hans Huber, Bern Göttingen Toronto Seattle, S 294–303Google Scholar
  12. 12.
    Schulz H, Schulz KH (1997) Kurzfristige psychische Belastungen und Immunfunktionen – eine metaanalytische Übersicht. In: Schulz KH, Kugler J, Schedlowski M (Hrsg) Psychoneuroimmunologie. Hans Huber, Bern Göttingen Toronto Seattle, S 21–59Google Scholar
  13. 13.
    Biondi M (2001) Effects of stress on immune functions: an overview. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol 2, 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 189–226Google Scholar
  14. 14.
    Segerstrom SC, Miller GE (2004) Psychological stress and the human immune system: a metaanalytic study of 30 years of inquiry. Psychol Bull 130:601–630PubMedGoogle Scholar
  15. 15.
    Haddad JJ, Saade NE, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitaryadrenal revolving axis. J Neuroimmunol 133:1–19PubMedGoogle Scholar
  16. 16.
    Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedGoogle Scholar
  17. 17.
    Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Ann Rev Immunol 20:125–163Google Scholar
  18. 18.
    McEwen BS, Biron CA, Brunson K et al. (1997) Neural-endocrine-immune interactions: The role of adrenocorticoids as modulators of immune function in health and disease. Brain Res Rev 23:79–133PubMedGoogle Scholar
  19. 19.
    Padgett DA, Glaser R (2003) How stress influences the immune response. Trends Immunol 24:444–448PubMedGoogle Scholar
  20. 20.
    Capuron L, Ravaud A, Miller AH, Dantzer R (2004) Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2and/or interferon-α cancer therapy. Brain Behav Immun 18:205–213PubMedGoogle Scholar
  21. 21.
    Maier SF (2003) Bi-directional immune-brain communication: implications for understanding stress, pain, and cognition. Brain Behav Immun 17:69–85PubMedGoogle Scholar
  22. 22.
    Bellinger D, Lorton D, Lubahn C, Felten D (2001) Innervation of lymphoid organs-association of nerves with cells of the immune system and their implications in disease. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol. 1. 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 55–111Google Scholar
  23. 23.
    Madden KS (2001) Catecholamines, sympathetic nerves and immunity. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol. 1. 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 197–216Google Scholar
  24. 24.
    Tarkowski E (2001) Impact of brain injury on immune functions. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol. 2. 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 349–372Google Scholar
  25. 25.
    Konstantinos AP, Sheridan JF (2001) Stress and influenza viral infection: modulation of proinflammatory cytokine responses in the lung. Respir Physiol 128:71–77PubMedGoogle Scholar
  26. 26.
    Bonneau RH, Padgett DA, Sheridan JF (2001) Psychoneuroimmune interactions in infectious disease: studies in animals. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, Vol. 2. 3rd edn. Academic Press, San Diego San Francisco New York Boston London Sydney Tokyo, pp 483–497Google Scholar
  27. 27.
    Cohen S, Tyrrell DA, Smith AP (1991) Psychological stress and susceptibility to the common cold. N Engl J Med 325:606–612PubMedCrossRefGoogle Scholar
  28. 28.
    Stone AA et al. (1992) Development of common cold symptoms following experimental rhinovirus infection is related to prior stressful life events. Behav Med 18:115–120PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen S, Doyle WJ, Skoner DP et al. (1997) Social ties and susceptibility to the common cold. JAMA 277:1940–1944PubMedGoogle Scholar
  30. 30.
    Cohen S, Frank E, Doyle WJ et al. (1998) Types of stressors that increase susceptibility to the common cold in healthy adults. Heatlh Psychol 17:214–223Google Scholar
  31. 31.
    Cohen S, Doyle WJ, Skoner DP (1999) Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med 61:175–180PubMedGoogle Scholar
  32. 32.
    Halford WP, Gebhardt BM, Carr DJ (1996) Mechanisms of herpes simplex virus type 1 reactivation. J Virol 70:5051–5060PubMedGoogle Scholar
  33. 33.
    Padgett DA, Sheridan JF, Dorne J et al. (1998) Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci USA 95:7231–7235PubMedGoogle Scholar
  34. 34.
    Glaser R, Kiecolt-Glaser JK, Speicher CE, Holliday JE (1985) Stress, loneliness and changes in herpesvirus latency. J Behav Med 8:249–260PubMedGoogle Scholar
  35. 35.
    Kiecolt-Glaser JK, Garner W, Speicher C et al. (1984) Psychosocial modifiers of immunocompetence in medical students. Psychosom Med 46:7–14PubMedGoogle Scholar
  36. 36.
    Kiecolt-Glaser JK, Glaser R, Strain EC et al. (1986) Modulation of cellular immunity in medical students. J Behav Med 9:5–21PubMedGoogle Scholar
  37. 37.
    Glaser R, Kiecolt-Glaser JK, Stout JC et al. (1985) Stress-related impairments in cellular immunity. Psychiatry Res 16:233–239PubMedGoogle Scholar
  38. 38.
    Kiecolt-Glaser JK, Glaser R, Gravenstein S et al. (1996) Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc Natl Acad Sci USA 93:3043–3047PubMedGoogle Scholar
  39. 39.
    Vedhara K, Cox NK, Wilcock GK et al. (1999) Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet 353:627–631PubMedGoogle Scholar
  40. 40.
    Miller GE, Cohen S, Pressman S et al. (2004) Psychological stress and antibody response to influenza vaccination: when is the critical period for stress, and how does it get inside the body? Psychosom Med 66:215–223PubMedGoogle Scholar
  41. 41.
    Glaser R, Kiecolt-Glaser JK, Bonneau RH et al. (1992) Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosom Med 54:22–29PubMedGoogle Scholar
  42. 42.
    Morag M, Morag A, Reichenberg A et al. (1999) Psychological variables as predictors of rubella antibody titers and fatigue – a prospective, double blind study. J Psychiatr Res 33:389–395PubMedGoogle Scholar
  43. 43.
    Glaser R, Sheridan J, Malarkey WB et al. (2000) Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosom Med 62:804–807PubMedGoogle Scholar
  44. 44.
    Burns VE, Drayson M, Ring C, Carroll D (2002) Perceived stress and psychological well-being are associated with antibody status after meningitis C conjugate vaccination. Psychosom Med 64:963–970PubMedGoogle Scholar
  45. 45.
    Burns VE, Carroll D, Ring C, Drayson M (2003) Antibody response to vaccination and psychosocial stress in humans: relationships and mechanisms. Vaccine 21:2523–2534PubMedGoogle Scholar
  46. 46.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedGoogle Scholar
  47. 47.
    Kiecolt-Glaser JK, Marucha PT, Malarkey WB et al. (1995) Slowing of wound healing by psychological stress. Lancet 346:1194–1196PubMedGoogle Scholar
  48. 48.
    Marucha PT, Kiecolt-Glaser JK, Favagehi M (1998) Mucosal wound healing is impaired by examination stress. Psychosom Med 60:362–365PubMedGoogle Scholar
  49. 49.
    Glaser R, Kiecolt-Glaser JK, Marucha PT et al. (1999) Stress-related changes in proinflammatory cytokine production in wounds. Arch Gen Psychiatry 56:450–456PubMedGoogle Scholar
  50. 50.
    Padgett DA, Marucha PT, Sheridan JF (1998) Restraint stress slows cutaneous wound healing in mice. Brain Behav Immun 12:64–73PubMedGoogle Scholar
  51. 51.
    Kiecolt-Glaser JK, Page GG, Marucha PT et al. (1998) Psychological influences on surgical recovery: perspectives from psychoneuroimmunology. Am Psychol 53:1209–1218PubMedGoogle Scholar
  52. 52.
    Pharoah PDP, Day NE, Duffy S et al.(1997) Family history and the risk of breast cancer: a systemic review and meta-analysis. Int J Cancer 71:800–809PubMedGoogle Scholar
  53. 53.
    Arver B, Du Q, Chen J et al. (2000) Hereditary breast cancer: a review. Cancer Biol 10:271–288Google Scholar
  54. 54.
    Claus EB, Schildkraut JM, Thompson WD, Risch NJ (1996) The genetic attributable risk of breast cancer and ovarian cancer. Cancer 77:2318–2324PubMedGoogle Scholar
  55. 55.
    Bovbjerg DH, Valdimarsdottir HB (2001) Interventions for healthy individuals at familial risk for cancer. In: Baum A, Anderson BL (rfd) Psychosocial interventions for cancer. American Psychological Association, Washington, pp 305–320Google Scholar
  56. 56.
    Cohen M, Klein E, Kuten A et al. (2002) Increased emotional distress in daughters of breast cancer patients is associated with decreased natural killer cytotoxic activity, elevated levels of stress hormones and decreased secretion of TH1 cytokines. Int J Cancer 100:347–354PubMedGoogle Scholar
  57. 57.
    Gold SM, Zakowski SG, Valdimarsdottir HB, Bovbjerg DH (2003) Stronger endocrine responses after brief psychological stress in women at familial risk of breast cancer. Psychoneuroendocrinol 28:584–593Google Scholar
  58. 58.
    James GD, Berge-Landry HvH, Valdimarsdottir HB et al. (2004) Urinary catecholamine levels in daily life are elevated in women at familial risk of breast cancer. Psychoneuroendocrinol 29:831–838Google Scholar
  59. 59.
    Dettenborn L, James GD, van Berge-Landry H et al. (2005) Heightened cortisol responses to daily stress in working women at familial risk for breast cancer. Biol Psychol 69:167–179PubMedGoogle Scholar
  60. 60.
    Valdimarsdottir HB, Zakowski SG, Gerin W et al. (2002) Heightened psychobiological reactivity to laboratory stressors in healthy women at familial risk of breast cancer. J Behav Med 25:51–65PubMedGoogle Scholar
  61. 61.
    Touitou Y, Levi F, Bogdan A et al. (1995) Rhythm alteration in patients with metastatic breast cancer. J Cancer Res Clin Oncol 121:181–188PubMedGoogle Scholar
  62. 62.
    van der Pompe G, Antoni MH, Heijnen CJ (1996) Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinol 21:361–374Google Scholar
  63. 63.
    Turner-Cobb JM (2002) Psychological and neuroendocrine correlates of disease progression. Int Rev Neurobiol 52:353–381PubMedCrossRefGoogle Scholar
  64. 64.
    Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000PubMedGoogle Scholar
  65. 65.
    Bovbjerg DH, Valdimarsdottir HB (1993) Familial cancer, emotional distress, and low natural cytotoxic activity in healthy women. Ann Oncol 4:745–752PubMedGoogle Scholar
  66. 66.
    Imai K, Matsuyama S, Miyake S et al. (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799PubMedGoogle Scholar
  67. 67.
    Whiteside T, Herberman R (1989) The role of natural killer cells in human disease. Clin Immunol Immunopathol 53:1483–1503Google Scholar
  68. 68.
    Levy SM, Herberman RB, Maluish AM et al. (1985) Prognostic risk assessment in primary breast cancer by behavioral and immunological parameters. Health Psychol 4:99–113PubMedGoogle Scholar
  69. 69.
    Levy SM, Herberman RB, Lippman M, d‘Angelo T (1987). Correlation of stress factors with sustained depression of Natural Killer Cell Activity and predicted prognosis in patients with breast cancer. J Clin Oncol 5:348–353PubMedGoogle Scholar
  70. 70.
    Levy S, Herberman R, Lipman M et al. (1991) Immunological and psychosocial predictors of disease recurrence in patients with early stage breast cancer. Behav Med 17:67–75PubMedCrossRefGoogle Scholar
  71. 71.
    Ben Eliyahu S (2003) The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology. Brain Behav Immun 17:S27–S36Google Scholar
  72. 72.
    Byrnes Perreira D, Antoni MH, Danielson A et al. (2003) Life stress and cervical squamous intrepithelial lesions in women with human papillomavirus and human immunodeficiency virus. Psychosom Med 65:427–434Google Scholar
  73. 73.
    Glaser R, Thorn B, Tarr K et al. (1985) Effects of stress on methyltransferase synthesis: an important DNA repair enzyme. Health Psychol 4:403–412PubMedGoogle Scholar
  74. 74.
    Kiecolt-Glaser JK, Stephens RE, Lipetz PD et al. (1985) Distress and DNA repair in human lymphocytes. J Behav Med 8:311–320PubMedGoogle Scholar
  75. 75.
    Schulz KH, Schulz H, Schulz O, Kerekjarto M (1998) Krebspatienten und ihre Familien. Wechselseitige Belastung und Unterstützung. Schattauer, StuttgartGoogle Scholar
  76. 76.
    Andersen B, Kiecolt-Glaser J, Glaser R (1994) A biobehavioral model of cancer stress and disease course. Am Psychologist 49:389–404Google Scholar
  77. 77.
    Gamble L, Mason CM, Nelson S (2006) The effects of alcohol on immunity and bacterial infection in the lung. Med Mal Infect 36 (in press)Google Scholar
  78. 78.
    Irwin M (2002) Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun 16:503–512PubMedGoogle Scholar
  79. 79.
    Schulz KH, Szlovak C, Schulz H et al. (1998) Implementierung und Evaluation eines ambulanten bewegungstherapeutischen Rehabilitationsangebotes für Brustkrebspatientinnen. Psychother Psychosom Med Psychol 48:398–407PubMedGoogle Scholar
  80. 80.
    Schulz KH, Heesen C (2005) Auswirkungen körperlicher Aktivität bei chronisch Kranken. Beispiele aus der Onkologie und der Neurologie. Bundesgesundheitsbl Gesundheitsforschung Gesundheitsschutz 48:906–913Google Scholar
  81. 81.
    Gold SM, Mohr DC, Huitinga I et al. (2005) The role of stress-response systems for the pathogenesis and progression of MS. Trends Immunol 26:644–652PubMedGoogle Scholar
  82. 82.
    Mohr DC, Pelletier D (2006) A temporal framework for understanding the effects of stressful life events on inflammation in patients with multiple sclerosis. Brain Behav Immun 20:27–36PubMedGoogle Scholar
  83. 83.
    Wilder RL (1995) Neuroendocrine-immune system interactions and autoimmunity. Ann Rev Immunol 13:307–338Google Scholar
  84. 84.
    Sternberg EM, Glowa JR, Smith MA et al. (1992) Corticotropin releasing hormone related behavioural and neuroendocrine response to stress in Lewis and Fischer rats. Brain Res 570:54–60PubMedGoogle Scholar
  85. 85.
    Mason D, MacPhee I, Antoni F (1990) The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat. Immunol 70:1–5Google Scholar
  86. 86.
    Kuroda Y, Mori T, Hori T (1994) Restraint stress suppresses experimental allergic encephalomyelitis in Lewis rats. Brain Res Bull 34:15–17PubMedGoogle Scholar
  87. 87.
    Bartolomucci A, Sacerdote P, Panerai AE et al. (2003) Chronic psychosocial stress-induced downregulation of immunity depends upon individual factors. J Neuroimmunol 141(1–2):58–64PubMedGoogle Scholar
  88. 88.
    Michelson D, Stone L, Galliven E et al. (1994) Multiple sclerosis is accociated with alterations in hypothalamic-pituitary-axis function. J Clin Endocrinol Metab 79:848–853PubMedGoogle Scholar
  89. 89.
    Grasser A, Möller A, Backmund A et al. (1996) Heterogeneity of hypothalamic-pituitary-adrenal system response to a combined dexamethasone- CRH test in multiple sclerosis. Exp Clin Endocrinol Diabetes 104:31–37PubMedGoogle Scholar
  90. 90.
    Wei T, Lightman SL (1997) The neuroendocrine axis in patients with multiple sclerosis. Brain 120:1067–1076PubMedGoogle Scholar
  91. 91.
    Purba JS, Raadsheer F, Hofman MA et al. (1995) Increased number of corticotropin releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis. Neuroendocrinol 62:62–70Google Scholar
  92. 92.
    Reder AT, Lowy MT, Meltzer HY, Antel JP (1987) Dexamethasone suppression test abnormalities in multiple sclerosis: relation to ACTH therapy. Neurology 37:849–853PubMedGoogle Scholar
  93. 93.
    Then Bergh F, Kümpfel T, Trenkwalder C et al. (1999) Dysregulation of the hypothalamopituitary- adrenal axis is related to the clinical course of MS. Neurology 53:772–777PubMedGoogle Scholar
  94. 94.
    Heesen C, Gold SM, Raji A et al. (2002) Cognitive impairment correlates with hypothalamopituitary- adrenal axis dysregulation in multiple sclerosis. Psychoneuroendocrinol 27:505–517Google Scholar
  95. 95.
    Schumann EM, Kümpfel T, Then Bergh F et al. (2002) Activity of the hypothalamic-pituitaryadrenal axis in multiple sclerosis: correlations with gadolineum-enhancing lesions and ventricular volume. Ann Neurol 51:763–767PubMedGoogle Scholar
  96. 96.
    Frohman EM, Monson NL, Lovett-Racke AE, Racke MK (2001) Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis. J Clin Immunol 21:61–73PubMedGoogle Scholar
  97. 97.
    Cosentino M, Zaffaroni M, Marino F et al. (2002) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240PubMedGoogle Scholar
  98. 98.
    Flachenecker P, Reiners KH, Krauser M et al.(2001) Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler 7:327–324PubMedGoogle Scholar
  99. 99.
    Huitinga I, Erkut ZA, Van Beurden D, Swaab DF (2003) The hypothalamo-pituitary-adrenal axis in multiple sclerosis. Ann NY Acad Sci 992:118–128PubMedCrossRefGoogle Scholar
  100. 100.
    Correale J, Gilmore W, Li S et al. (2000) Resistance to glucocorticoid-induced apoptosis in PLP peptide-specific T cell clones from patients with progressive MS. J Neuroimmunol 109:197–210PubMedGoogle Scholar
  101. 101.
    van Winsen LM, Muris DF, Polman CH et al. (2005) Sensitivity to glucocorticoids is decreased in relapsing remitting multiple sclerosis. J Clin Endocrinol Metab 90:734–740PubMedGoogle Scholar
  102. 102.
    DeRijk RH, Eskandari F, Sternberg EM (2004) Corticosteroid resistance in a subpopulation of multiple sclerosis patients as measured by ex vivo dexamethasone inhibition of LPS induced IL-6 production. J Neuroimmunol 151:180–188PubMedGoogle Scholar
  103. 103.
    Karaszewski JW, Reder AT, Maselli R et al. (1990) Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors are increased in progressive multiple sclerosis. Ann Neurol 27:366–372PubMedGoogle Scholar
  104. 104.
    Zoukos Y, Kidd D, Woodroofe MN et al. (1994) Increased expression of high affinity IL-2 receptors and beta-adrenoceptors on peripheral blood mononuclear cells is associated with clinical and MRI activity in multiple sclerosis. Brain 117 (Pt 2):307–315PubMedGoogle Scholar
  105. 105.
    Zoukos Y, Thomaides TN, Kidd D et al. (2003) Expression of beta2 adrenoreceptors on peripheral blood mononuclear cells in patients with primary and secondary progressive multiple sclerosis: a longitudinal six month study. J Neurol Neurosurg Psychiatry 74:197–202PubMedGoogle Scholar
  106. 106.
    Heesen C, Gold SM, Sondermann J et al. (2002) Oral terbutaline differentially affects cytokine (IL- 10, IL-12, TNF, IFNg) release in multiple sclerosis patients and controls. J Neuroimmunol 132:189– 195PubMedGoogle Scholar
  107. 107.
    Giorelli M, Livrea P, Trojano M (2004) Postreceptorial mechanisms underlie functional disregulation of beta2-adrenergic receptors in lymphocytes from Multiple Sclerosis patients. J Neuroimmunol 155:143–149PubMedGoogle Scholar
  108. 108.
    Frohman EM, Vayuvegula B, van den Noort S, Gupta S (1988) Norepinephrine inhibits gammainterferon- induced MHC class II (Ia) antigen expression on cultured brain astrocytes. J Neuroimmunol 17:89–101PubMedGoogle Scholar
  109. 109.
    De Keyser J, Wilczak N, Leta R, Streetland C (1999) Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors. Neurology 53:1628–1633PubMedGoogle Scholar
  110. 110.
    Heesen C, Gold SM, Hartmann S et al. (2003) Endocrine and cytokine response to standardized physical stress in patients with multiple sclerosis and healthy controls. Brain Behav Immun 17:473–481PubMedGoogle Scholar
  111. 111.
    Heesen C, Köhler G, Gross R et al. (2005) Fatigue in multiple sclerosis: altered cardiovascular and cytokine responses to cognitive stress. Mult Scler 11:51–57PubMedGoogle Scholar
  112. 112.
    Heesen C, Schulz H, Schmidt M et al. (2002) Endocrine and cytokine response to acute psychological stress in multiple sclerosis. Brain Behav Immun 16:282–287PubMedGoogle Scholar
  113. 113.
    Ackerman KD, Martino M, Heyman R et al. (1998) Stressor-induced alteration of cytokine production in multiple sclerosis patients and controls. Psychosom Med 60:484–491PubMedGoogle Scholar
  114. 114.
    Fassbender K, Schmidt R, Mossner R et al. (1998) Mood disorders and dysfunction of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol 55:66–72PubMedGoogle Scholar
  115. 115.
    De Keyser J, Zeinstra E, Wilczak N (2004) Astrocytic beta2-adrenergic receptors and multiple sclerosis. Neurobiol Dis 15:331–339PubMedGoogle Scholar
  116. 116.
    De Keyser J, Zeinstra E, Mostert J, Wilczak N (2004) Beta2-adrenoceptor involvement in inflammatory demyelination and axonal degeneration in multiple sclerosis. Trends Pharmacol Sci 25:67–71PubMedGoogle Scholar
  117. 117.
    Kümpfel T, Then Bergh F, Friess E et al. (1999) Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releasing hormone test in patients with multiple sclerosis. Neuroendocrinol 70:431–438Google Scholar
  118. 118.
    Huitinga I, Erkut ZA, van Beurden D, Swaab DF (2004) Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann Neurol 55:37–45PubMedGoogle Scholar
  119. 119.
    Gold SM, Raji A, Huitinga I et al. (2005) Hypothalamo-pituitary-adrenal axis hyperactivity predicts disease progression in multiple sclerosis. J Neuroimmunol 165:186–191PubMedGoogle Scholar
  120. 120.
    Mohr DC, Hart SL, Julian L, et al. (2004) Association between stressful life events and exacerbation in multiple sclerosis: a metaanalysis. BMJ 328:731–735PubMedGoogle Scholar
  121. 121.
    Filippini G, Munari L, Incorvaia B et al. (2003) Interferons in relapsing remitting multiple sclerosis: a systematic review. Lancet 361:545–552PubMedGoogle Scholar
  122. 122.
    Li J, Johansen C, Bronnum-Hansen H et al. (2004) The risk of multiple sclerosis in bereaved parents. Neurology 62:726–729PubMedGoogle Scholar
  123. 123.
    Wright RJ, Cohen RT, Cohen S (2005) The impact of stress on the development and expression of atopy. Curr Opin Allergy Clin Immunol 5:23–29PubMedCrossRefGoogle Scholar
  124. 124.
    Wright RJ, Rodriguez M, Cohen S (1998) Review of psychosocial stress and asthma: an integrated biopsychosicial approach. Thorax 53:1066–1074PubMedCrossRefGoogle Scholar
  125. 125.
    Kop WJ (2003) The integration of cardiovascular behavioral medicine and psychoneuroimmunology: new developments based on converging research fields. Brain Behav Immun 17:233–237PubMedGoogle Scholar
  126. 126.
    Fahdi IE, Gaddam V, Garza L et al. (2003) Inflammation, infection and atherosclerosis. Brain Behav Immun 17:238–244PubMedGoogle Scholar
  127. 127.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedGoogle Scholar
  128. 128.
    Dantzer R (2005) Somatization: a psychoneuroimmune perspective. Psycho neuroendocrinology 30:947–952CrossRefGoogle Scholar
  129. 129.
    Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24PubMedGoogle Scholar
  130. 130.
    Konsman JP, Parnet P, Dantzer R (2002) Cytokineinduced sickness behavior: mechanisms and implications. Trends Neurosci 25:154–159PubMedGoogle Scholar
  131. 131.
    Reichenberg A, Yirmiya R, Schuld A et al. (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452PubMedGoogle Scholar
  132. 132.
    Capuron L, Dantzer R (2003) Cytokines and depression: the need for a new paradigm. Brain Behav Immun 17 [Suppl 1]:S119–S124PubMedGoogle Scholar
  133. 133.
    Anisman H, Merall Z, Hayley S (2003) Sensitization associated with stressors and cytokine treatments. Brain Behav Immun 17:86–93PubMedGoogle Scholar
  134. 134.
    Fawzy FI, Kemeny ME, Fawzy NW et al. (1990) A structured psychiatric intervention for cancer patients. II. Changes over time in immunological measures. Arch Gen Psychiatry 47:729–735PubMedGoogle Scholar
  135. 135.
    Fawzy F, Fawzy N, Hyun C et al. (1993) Malignant melanoma. Effects of an early psychiatric intervention, coping, and affective state on recurrance and survival 6 years later. Arch Gen Psychiatry 50:681–689PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Universitätsklinikum EppendorfTransplantationszentrum und Institut für Medizinische PsychologieHamburgBRD
  2. 2.UCLA School of MedicineLos AngelesUSA

Personalised recommendations