Advertisement

Der Anaesthesist

, Volume 68, Issue 11, pp 733–741 | Cite as

Anästhesiologisches Management bei endovaskulärer Schlaganfalltherapie

  • H. J. TheilenEmail author
  • J. C. Gerber
Leitthema
  • 707 Downloads

Zusammenfassung

Bei akutem ischämischem Schlaganfall (AIS) bewahrt nur die rasche Rekanalisation der verschlossenen Hirnarterie den betroffenen Patienten vor einem schweren neurologischen Defizit oder sogar einem tödlichen Ausgang. Lange Zeit war lediglich eine systemische Lyse der einzige, zur Verfügung stehende kausale Ansatz. Nach den Publikationen mehrerer randomisierter, prospektiver Studien zum Einsatz der endovaskulären Thrombektomie bei AIS mit Nachweis deutlich besserer Behandlungsergebnisse unter Anwendung von Stent-Retriever-Systemen wurden jedoch neue Empfehlungen herausgegeben. Das als endovaskuläre Therapie [EVT] bezeichnete Verfahren entfernt den Thrombus durch Absaugen und/oder Einfangen des Thrombus via Stent. Während der EVT ist die anästhesiologische Betreuung dieser Patienten auch zur Aufrechterhaltung adaptierter kardiopulmonaler Verhältnisse bis auf wenige Ausnahmen unverzichtbar. Welche Form der Narkose (Intubationsnarkose, d. h. „general anesthesia“ [GA] vs. Sedierung, d. h. „conscious sedation“ [CS]) für die Intervention erforderlich ist, wird kontrovers diskutiert. Während retrospektive Studien deutliche Nachteile der GA bei EVT beschrieben, konnte dieser Effekt in prospektiven Studien nicht mehr nachgewiesen werden. Für die Reduktion neurologischer Defizite nach AIS und EVT unter GA dürfte es wesentlich sein, die EVT durch die Narkosemaßnahmen nicht wesentlich zu verzögern sowie eine zerebrale Perfusionsminderung infolge eines Blutdruckabfalls oder einer iatrogenen, durch Hyperventilation ausgelösten Hypokapnie zu vermeiden. Letztlich sollte sich die Wahl des anästhesiologischen Managements am aktuellen klinischen Zustand des zu betreuenden Patienten ausrichten.

Schlüsselwörter

Zerebrale Ischämie Thrombektomie Reperfusion Hypotension Hypovolämie 

Anesthesiological management in endovascular stroke treatment

Abstract

Early recanalization of the closed cerebral arteries after acute ischemic stroke (AIS) is the only treatment to minimize long-term disability and to reduce the associated morbidity and mortality. For a long time the only proven causal treatment of AIS was intravenous thrombolysis; however, after the publication of a series of randomized prospective studies concerning endovascular mechanical thrombectomy using stent retriever systems after AIS, new guidelines were published. It was found that endovascular treatment (EVT) dramatically improves the outcome of eligible patients. The stent retriever enables high recanalization rates by clot removal from the cerebral arterial system by means of aspiration of the thrombus via the catheter and/or by entrapping it with a stent system. The management of anesthesia during the procedure is indispensable to prevent hypoxia and hemodynamic instability; however, which form of anesthesia (i.e. general anesthesia vs. conscious sedation) is advantageous for the patient during EVT is controversially discussed. In the first studies using retrospective data conscious sedation resulted in a better outcome compared to general anesthesia following EVT; however, in prospective studies this finding could not be confirmed. To obtain optimal neurological results after AIS and EVT with general anesthesia, it is of tremendous importance not to delay the EVT due to the anesthesiology procedure. Furthermore, hypotension, hypovolemia and hypocapnia should also be strictly avoided. Finally, the optimal anesthesiological approach should be guided by the current clinical state and pre-existing comorbidities of the patient.

Keywords

Brain ischemia Thrombectomy Reperfusion Hypotension Hypovolemia 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H.J. Theilen und J.C. Gerber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Albers GW, Marks MP, Kemp S et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718CrossRefGoogle Scholar
  2. 2.
    Berkhemer OA, Fransen PS, Beumer D, MR CLEAN Investigators et al (2015) A randomized trial of intra-arterial treatment for acute ischemic stroke. N Engl J Med 372:11–20CrossRefGoogle Scholar
  3. 3.
    Berkhemer OA, Jansen IG, Beumer D et al (2016) Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 47:768–767CrossRefGoogle Scholar
  4. 4.
    Berkhemer OA, van den Berg LA, Fransen PSS et al (2016) The effect of anesthetic management during intra-arterial therapy for acute stroke in MR CLEAN. Neurology 87:656–664CrossRefGoogle Scholar
  5. 5.
    Broussalis E, Trinka E, Hitzl W et al (2013) Comparison of stent-retriever devices versus the Merci retriever for endovascular treatment of acute stroke. AJNR Am J Neuroradiol 34:366–372CrossRefGoogle Scholar
  6. 6.
    Campbell BC, Hill MD, Rubiera M et al (2016) Safety and efficacy of solitaire stent thrombectomy: Individual patient data meta-analysis of randomized trials. Stroke 47:798–806CrossRefGoogle Scholar
  7. 7.
    Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS (2001) Adult respiratory distress syndrome: A complication of induced hypertension after severe head injury. J Neurosurg 95:560–568CrossRefGoogle Scholar
  8. 8.
    Curley G, Kavanagh BP, Laffey JG (2010) Hypocapnia and the injured brain: More harm than benefit. Crit Care Med 38:1348–1359CrossRefGoogle Scholar
  9. 9.
    Furlan A, Higashida R, Wechsler L et al (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: A randomized trial Prolyse in acute cerebral thromboembolism. JAMA 282:2003–2011CrossRefGoogle Scholar
  10. 10.
    Goyal M, Demchuk AM, Menon BK et al (2015) ESCAPE trial investigators. Randomized assessment of rapid endovasculartreatment of ischemic stroke. N Engl J Med 372:1019–1030CrossRefGoogle Scholar
  11. 11.
    Grysiewicz RA, Thomas K, Pandey DK (2008) Epidemiology of ischemic and hemorrhagic stroke: Incidence, prevalence, mortality, and risk factors. Neurol Clin 26:871–895CrossRefGoogle Scholar
  12. 12.
    He M, Wang J, Liu N et al (2018) Effects of blood pressure in the early phase of ischemic stroke and stroke subtype in poststroke cognitive impairment. Stroke 49:1610–1617CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Jääskelainen SK, Kaisti KK, Suni L et al (2003) Sevofluran is epileptogenic in healthy subjects at surgical levels of anesthesia. Neurology 61:1073–1078CrossRefGoogle Scholar
  19. 19.
    John S, Somal J, Thebo U et al (2015) Safety and hemodynamic profile of propofol and dexmedetomidine during intra-artrial acute stroke therapy. J Stroke Cerebrovasc Dis 24:2397–2403CrossRefGoogle Scholar
  20. 20.
    Jovin TG, Chamorro A, Cobo E et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372:2296–2306CrossRefGoogle Scholar
  21. 21.
    Kagansky N, Levy S, Knobler H (2001) The role of hyperglycemia in acute stroke. Arch Neurol 58:1209–1212CrossRefGoogle Scholar
  22. 22.
    Kaisti KK, Langsjö JW, Aaalto S et al (2003) Effects of sevofluran, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99:603–613CrossRefGoogle Scholar
  23. 23.
    Laubinger R, Guthke K, Erdmann U, Klein U (2007) Angioneurotic orolingual edema associated with the use of rt-PA following a stroke. Anaesthesist 56:1024–1027CrossRefGoogle Scholar
  24. 24.
    Leonardi-Bee J, Bath PM, Phillips SJ, Sandercock PA, IST Collaborative Group (2002) Blood pressure and clinical outcomes in the International Stroke Trial. Stroke 33:1315–1320CrossRefGoogle Scholar
  25. 25.
    Löwhagen Hendén P, Rentzos A et al (2015) Hypotension during endovascular treatment of ischemic stroke is a risk factor for poor neurological outcome. Stroke 46:2678–2680CrossRefGoogle Scholar
  26. 26.
    Nogueira RG, Jadhav AP (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21CrossRefGoogle Scholar
  27. 27.
    Osei E, den Hertog HM, Berkhemer OA et al (2017) Admission glucose and effect of intra-arterial treatment in patients with acute ischemic stroke. Stroke 48:1299–1305CrossRefGoogle Scholar
  28. 28.
    Peng Y, Wu Y, Huo X et al (2018) Outcomes of anesthesia selection in endovascular treatment of acute ischemic stroke. J Neurosurg Anesthesiol 31(1):43–49.  https://doi.org/10.1097/ANA.0000000000000500 CrossRefGoogle Scholar
  29. 29.
    Penumbra Pivotal Stroke Trial Investigators (2009) The penumbra pivotal stroke trial: Safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40:2761–2768CrossRefGoogle Scholar
  30. 30.
    Pérez MA, Miloslavski E, Fischer S, Bäzner H, Henkes H (2012) Intracranial thrombectomy using the Solitaire stent: A historical vignette. J Neurointerv Surg 4:e32CrossRefGoogle Scholar
  31. 31.
    Petchy MF, Bounes V, Dehours E et al (2014) Characteristics of patients with acute ischemic stroke intubated before imaging. Eur J Emerg Med 21:145–147PubMedGoogle Scholar
  32. 32.
    Powers WJ, Rabinstein AA, Ackerson T et al (2018) Guidelines for the early management of patients with acute ischemic stroke. Stroke 49:e46–e99CrossRefGoogle Scholar
  33. 33.
    Rappaport BA, Suresh S, Hertz S, Evers AS, Orser BA (2015) Anesthetic neurotoxicity: Clinical implications of animal models. N Engl J Med 372:796–797CrossRefGoogle Scholar
  34. 34.
    Riedel CH, Zimmermann P, Jensen-Kondering U et al (2011) The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 42:1775–1777CrossRefGoogle Scholar
  35. 35.
    Roffe C, Nevatte T, Sim J et al (2017) Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: The stroke oxygen study randomized clinical trial. JAMA 318:1125–1135CrossRefGoogle Scholar
  36. 36.
    Saver JL, Goyal M, Bonafe A et al (2015) Stent-retriever thrombectomy after intravenous t‑PA vs. t‑PA alone in stroke. N Engl J Med 372:2285–2295CrossRefGoogle Scholar
  37. 37.
    Saxena M, Young P, Pilcher D et al (2015) Early temperature and mortality in critically ill patients with acute neurological diseases: Trauma and stroke differ from infection. Intensive Care Med 41:823–832CrossRefGoogle Scholar
  38. 38.
    Schönenberger S, Uhlmann L, Hacke W et al (2016) Effect of conscious sedations vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy. JAMA 316:1986–1996CrossRefGoogle Scholar
  39. 39.
    Simonsen CZ, Yoo AJ, Sørensen LH et al (2018) Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischemic stroke. A randomized clinical trial. JAMA Neurol 75:470–477CrossRefGoogle Scholar
  40. 40.
    Stolmeijer R, Bouma HR, Zijlstra JG et al (2018) A systematic review of the effects of hyperoxia in acutely ill patients: Should we aim for less? Biomed Res Int.  https://doi.org/10.1155/2018/7841295 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Takahashi CE, Brambrink AM, Aziz MF et al (2014) Association of intraprocedural blood pressure and end-tidal carbon dioxide with outcome after acute stroke intervention. Neurocrit Care 20:202–208CrossRefGoogle Scholar
  42. 42.
    van den Berg L, Koelman DLH, Berkhemer OA et al (2015) Type of anesthesia and differences in clinical outcome after intra-arterial treatment for ischemic stroke. Stroke 46:1257–1262CrossRefGoogle Scholar
  43. 43.
    Wang H, Tang Y, Rong X, Li H, Pan R, Wang Y, Peng Y (2014) Effects of early blood pressure lowering on early and long-term outcomes after acute stroke: An updated meta-analysis. PLoS ONE 9:e97917CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Anästhesiologie und IntensivtherapieUniversitätsklinikum Carl-Gustav-CarusDresdenDeutschland
  2. 2.Institut und Poliklinik für NeuroradiologieUniversitätsklinikum Carl-Gustav-CarusDresdenDeutschland

Personalised recommendations