Advertisement

Der Anaesthesist

, Volume 68, Issue 11, pp 744–754 | Cite as

Algorithmusbasierte Präventionsstrategien zur Vermeidung neuromuskulärer Restblockaden

  • C. UnterbuchnerEmail author
  • K. Ehehalt
  • B. Graf
Allgemeinanästhesie

Zusammenfassung

Hintergrund

Die postoperative, neuromuskuläre Restblockade („train of four ratio“ <0,9) stellt ein Outcome-relevantes Problem balancierter Anästhesie dar. Sie erhöht die postoperative Morbidität und Mortalität. Mittellang und kurz wirksame Muskelrelaxanzien, quantitatives neuromuskuläres Monitoring und pharmakologische Reversierung der Muskelrelaxation reduzieren die Inzidenz dieser Komplikation. Es stellt sich die Frage, ob diese Einzelmaßnahmen in einem Algorithmus zusammengefasst werden können.

Methoden, Literaturrecherche

Selektive Literaturrecherche in PubMed nach Schlagwörtern. Zudem wurden Leitlinien der nationalen Fachgesellschaften durchsucht.

Ergebnisse

Die Inzidenz von neuromuskulären Restblockaden beträgt bis zu 93 %. Mithilfe der kalibrierten Akzeleromyographie kann eine Restrelaxation mit einem negativ-prädiktiven Wert von 97 % [95 %-Konfidenzintervall: 83–100] erfasst werden. Die Reversierung durch Gabe des Acetylcholinesteraseinhibitors Neostigmin senkt die Inzidenz von Restblockaden unter akzeleromyographischer Testung auf bis zu 3,3 %, ohne akzeleromyographische Testung nur auf 15,4 %. Die Reversierung mithilfe von Sugammadex kann neuromuskuläre Restblockaden annähernd eliminieren. Das quantitative neuromuskuläre Monitoring und die Reversierung können zweckmäßig in einen stufenbasierten Behandlungsalgorithmus integriert werden.

Schlussfolgerung

Das Konzept einer algorithmusbasierten Reversierung mit Neostigmin und Sugammadex, unter Verwendung von quantitativem neuromuskulärem Monitoring, erlaubt es, eine Restrelaxation vor der Extubation des Patienten innerhalb von 10 min zu behandeln. Voraussetzung ist die intensive und fortlaufende Schulung der Anästhesisten. Das quantitative neuromuskuläre Monitoring sollte verpflichtend an jedem anästhesiologischen Arbeitsplatz beim Einsatz von Muskelrelaxation verfügbar sein und angewendet werden. Es ist wünschenswert, dass die deutschsprachigen, anästhesiologischen Fachgesellschaften entsprechende Empfehlungen formulieren.

Schlüsselwörter

Muskelrelaxanzien Neuromuskuläres Monitoring Sugammadex Neostigmin Akzeleromyographie 

Algorithm-based preventive strategies for avoidance of residual neuromuscular blocks

Abstract

Background

Postoperative residual neuromuscular block (train of four ratio <0.9) is an outcome-relevant problem in balanced anesthesia, which increases postoperative morbidity and mortality. Implementation of medium and short-acting muscle relaxants, quantitative neuromuscular monitoring and pharmacological reversal of muscle relaxation reduce the incidence of residual neuromuscular block. The question arises whether this is suitable to create a pragmatic algorithm integrating these three individual methods to reduce paralysis-associated complications?

Methods

A selective literature search was carried out in PubMed and guidelines of national specialist societies were searched using special terms.

Results

The incidence of residual neuromuscular block varied among the studies but was as high as 93%. Using calibrated acceleromyography it is possible to identify a residual relaxation with a negative predictive value of 97% (95% confidence interval, CI 83–100%). Reversal by administration of the acetylcholinesterase inhibitor neostigmine reduces the incidence of residual neuromuscular block to 15.4%, in combination with calibrated acceleromyography to 3.3%. Reversal with sugammadex can nearly completely eliminate residual neuromuscular block. Quantitative neuromuscular monitoring and pharmacological reversal can be suitably integrated into a stage-based, pragmatic treatment algorithm.

Conclusion

The algorithm-based concept of quantitative neuromuscular monitoring and pharmacological reversal using neostigmine and sugammadex enables residual neuromuscular block to be treated within 10 min before extubation of the patient. Ongoing educational programs are essential for implementation of modern muscle relaxant management concepts. Quantitative neuromuscular monitoring should be mandatory for all patients receiving neuromuscular blocking drugs. It would be desirable that German-speaking societies for anesthesiology make appropriate recommendations in guidelines.

Keywords

Muscle relaxants Neuromuscular monitoring Sugammadex Neostigmine Acceleromyography 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Unterbuchner, K. Ehehalt und B. Graf geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    American Society of Anesthesiologists (2019) Standards for basic anesthetic monitoring. http://www.asahq.org/search#q=STANDARDS%20FOR%20BASIC%20ANESTHETIC20MONITORING&sort=relevancy. Zugegriffen: 14.02.2019Google Scholar
  2. 2.
    Arbous MS, Meursing AE, van Kleef JW et al (2005) Impact of anesthesia management characteristics on severe morbidity and mortality. Anesthesiology 102:257–268 (quiz 491–252)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Aytac I, Postaci A, Aytac B et al (2016) Survey of postoperative residual curarization, acute respiratory events and approach of anesthesiologists. Braz J Anesthesiol 66:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bartkowski RR (1987) Incomplete reversal of pancuronium neuromuscular blockade by neostigmine, pyridostigmine, and edrophonium. Anesth Analg 66:594–598PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Baumuller E, Schaller SJ, Chiquito Lama Y et al (2015) Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg−1). Br J Anaesth 114:785–793PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bellod A Jr., March X, Hernandez C et al (2014) Delayed recurarisation after sugammadex reversal. Eur J Anaesthesiol 31:710–712PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Blobner M, Eriksson LI, Scholz J et al (2010) Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol 27:874–881PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Blobner M, Hunter JM, Ulm K et al (2019) Neuromuscular monitoring and reversal: responses to the POPULAR study—authors’ reply. Lancet Respir Med 7:e7–e8PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bronsert MR, Henderson WG, Monk TG et al (2017) Intermediate-acting nondepolarizing neuromuscular blocking agents and risk of postoperative 30-day morbidity and mortality, and long-term survival. Anesth Analg 124:1476–1483PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Brueckmann B, Sasaki N, Grobara P et al (2015) Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth 115:743–751PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Brull SJ, Kopman AF (2017) Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology 126:173–190PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Brull SJ, Murphy GS (2010) Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg 111:129–140PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bulka CM, Terekhov MA, Martin BJ et al (2016) Nondepolarizing neuromuscular blocking agents, reversal, and risk of postoperative pneumonia. Anesthesiology 125:647–655PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Caldwell JE (1995) Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg 80:1168–1174PubMedPubMedCentralGoogle Scholar
  15. 15.
    Caldwell JE (2009) Clinical limitations of acetylcholinesterase antagonists. J Crit Care 24:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Capron F, Alla F, Hottier C et al (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 100:1119–1124PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Capron F, Fortier LP, Racine S et al (2006) Tactile fade detection with hand or wrist stimulation using train-of-four, double-burst stimulation, 50-hertz tetanus, 100-hertz tetanus, and acceleromyography. Anesth Analg 102:1578–1584PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Checketts MR, Alladi R, Ferguson K et al (2016) Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia 71:85–93PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Choi ES, Oh AY, Seo KS et al (2016) Optimum dose of neostigmine to reverse shallow neuromuscular blockade with rocuronium and cisatracurium. Anaesthesia 71:443–449PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Claudius C, Skovgaard LT, Viby-Mogensen J (2009) Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography. Anesthesiology 110:1261–1270PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Colegrave N, Billard V, Motamed C et al (2016) Comparison of the TOF-scan acceleromyograph to TOF-watch SX: influence of calibration. Anaesth Crit Care Pain Med 35:223–227PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cooper AL, Leigh JM, Tring IC (1989) Admissions to the intensive care unit after complications of anaesthetic techniques over 10 years. 1. The first 5 years. Anaesthesia 44:953–958PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dirkmann D, Britten MW, Pauling H et al (2016) Anticoagulant effect of sugammadex: just an in vitro artifact. Anesthesiology 124:1277–1285PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dobson G, Chow L, Flexman A et al (2019) Guidelines to the practice of anesthesia—revised edition 2019. Can J Anaesth 66:75–108PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Eikermann M, Blobner M, Groeben H et al (2006) Postoperative upper airway obstruction after recovery of the train of four ratio of the adductor pollicis muscle from neuromuscular blockade. Anesth Analg 102:937–942PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Eikermann M, Groeben H, Husing J et al (2003) Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 98:1333–1337PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Engbaek J, Roed J, Hangaard N et al (1994) The agreement between adductor pollicis mechanomyogram and first dorsal interosseous electromyogram. A pharmacodynamic study of rocuronium and vecuronium. Acta Anaesthesiol Scand 38:869–878PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Errando CL, Garutti I, Mazzinari G et al (2016) Residual neuromuscular blockade in the postanesthesia care unit: observational cross-sectional study of a multicenter cohort. Minerva Anestesiol 82:1267–1277PubMedPubMedCentralGoogle Scholar
  29. 29.
    European Medicines Agency (2013) Bridion product information. https://www.ema.europa.eu/en/documents/product-information/bridion-epar-product-information_en.pdf. Zugegriffen: 10.08.2018Google Scholar
  30. 30.
    Feltracco P, Tonetti T, Barbieri S et al (2016) Cisatracurium- and rocuronium-associated residual neuromuscular dysfunction under intraoperative neuromuscular monitoring and postoperative neostigmine reversal: a single-blind randomized trial. J Clin Anesth 35:198–204PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Flockton EA, Mastronardi P, Hunter JM et al (2008) Reversal of rocuronium-induced neuromuscular block with sugammadex is faster than reversal of cisatracurium-induced block with neostigmine. Br J Anaesth 100:622–630PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Fortier LP, McKeen D, Turner K et al (2015) The RECITE study: a Canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade. Anesth Analg 121:366–372PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fuchs-Buder T, Baumann C, De Guis J et al (2013) Low-dose neostigmine to antagonise shallow atracurium neuromuscular block during inhalational anaesthesia: a randomised controlled trial. Eur J Anaesthesiol 30:594–598PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fuchs-Buder T, Fink H, Hofmockel R et al (2008) Application of neuromuscular monitoring in Germany. Anaesthesist 57:908–914PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Fuchs-Buder T, Meistelman C, Alla F et al (2010) Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine. Anesthesiology 112:34–40PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Geldner G (2014) Erhöhung der Patientensicherheit durch exakte Steuerung der Muskelrelaxation. Anasthesiol Intensivmed 55:562–563Google Scholar
  37. 37.
    Grosse-Sundrup M, Henneman JP, Sandberg WS et al (2012) Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ 345:e6329PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Groudine SB, Soto R, Lien C et al (2007) A randomized, dose-finding, phase II study of the selective relaxant binding drug, sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth Analg 104:555–562PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hristovska AM, Duch P, Allingstrup M et al (2017) Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev 8:CD12763PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hunter JM (2012) Antagonising neuromuscular block at the end of surgery. BMJ 345:e6666PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hunter JM (2017) Reversal of residual neuromuscular block: complications associated with perioperative management of muscle relaxation. Br J Anaesth 119:i53–i62PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jones RK, Caldwell JE, Brull SJ et al (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kaufhold N, Schaller SJ, Stauble CG et al (2016) Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20). Br J Anaesth 116:233–240PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Keating GM (2016) Sugammadex: a review of neuromuscular blockade reversal. Drugs 76:1041–1052PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kent NB, Liang SS, Phillips S et al (2018) Therapeutic doses of neostigmine, depolarising neuromuscular blockade and muscle weakness in awake volunteers: a double-blind, placebo-controlled, randomised volunteer study. Anaesthesia 73:1079–1089PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Khandkar C, Liang S, Phillips S et al (2016) Comparison of kinemyography and electromyography during spontaneous recovery from non-depolarising neuromuscular blockade. Anaesth Intensive Care 44:745–751PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Khuenl-Brady KS, Wattwil M, Vanacker BF et al (2010) Sugammadex provides faster reversal of vecuronium-induced neuromuscular blockade compared with neostigmine: a multicenter, randomized, controlled trial. Anesth Analg 110:64–73PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kim KS, Cheong MA, Lee HJ et al (2004) Tactile assessment for the reversibility of rocuronium-induced neuromuscular blockade during propofol or sevoflurane anesthesia. Anesth Analg 99:1080–1085PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kirkegaard H, Heier T, Caldwell JE (2002) Efficacy of tactile-guided reversal from cisatracurium-induced neuromuscular block. Anesthesiology 96:45–50PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kirmeier E, Eriksson LI, Lewald H et al (2019) Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med 7:129–140PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kleinschmidt S, Ziegeler S, Bauer C (2005) Cholinesterase inhibitors. Importance in anaesthesia, intensive care medicine, emergency medicine and pain therapy. Anaesthesist 54:791–799PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kopman AF, Yee PS, Neuman GG (1997) Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 86:765–771PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kotake Y, Ochiai R, Suzuki T et al (2013) Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg 117:345–351PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Le Corre F, Nejmeddine S, Fatahine C et al (2011) Recurarization after sugammadex reversal in an obese patient. Can J Anaesth 58:944–947PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ledowski T, Falke L, Johnston F et al (2014) Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal. Eur J Anaesthesiol 31:423–429PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ledowski T, Hillyard S, Kozman A et al (2012) Unrestricted access to sugammadex: impact on neuromuscular blocking agent choice, reversal practice and associated healthcare costs. Anaesth Intensive Care 40:340–343PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lee C, Jahr JS, Candiotti KA et al (2009) Reversal of profound neuromuscular block by sugammadex administered three minutes after rocuronium: a comparison with spontaneous recovery from succinylcholine. Anesthesiology 110:1020–1025PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lemmens HJ, El-Orbany MI, Berry J et al (2010) Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine. BMC Anesthesiol 10:15PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Liang SS, Stewart PA, Phillips S (2013) An ipsilateral comparison of acceleromyography and electromyography during recovery from nondepolarizing neuromuscular block under general anesthesia in humans. Anesth Analg 117:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Magorian TT, Lynam DP, Caldwell JE et al (1990) Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology 73:410–414PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Majekodunmi AA, Ikotun OA, Oladokun OD (2017) Incidence of postoperative residual paralysis in a nigerian teaching hospital. Niger J Clin Pract 20:1561–1565PubMedPubMedCentralGoogle Scholar
  62. 62.
    Martinez-Ubieto J, Ortega-Lucea S, Pascual-Bellosta A et al (2016) Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol 82:735–742PubMedPubMedCentralGoogle Scholar
  63. 63.
    McLean DJ, Diaz-Gil D, Farhan HN et al (2015) Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology 122:1201–1213PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    de Menezes CC, Peceguini LA, Silva ED et al (2012) Use of sugammadex after neostigmine incomplete reversal of rocuronium-induced neuromuscular blockade. Rev Bras Anestesiol 62:543–547PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Merry AF, Cooper JB, Soyannwo O et al (2010) International standards for a safe practice of anesthesia 2010. Can J Anaesth 57:1027–1034PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Miller RD, Van Nyhuis LS, Eger EI 2nd et al (1974) Comparative times to peak effect and durations of action of neostigmine and pyridostigmine. Anesthesiology 41:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Mirakhur RK, Briggs LP, Clarke RS et al (1981) Comparison of atropine and glycopyrrolate in a mixture with pyridostigmine for the antagonism of neuromuscular block. Br J Anaesth 53:1315–1320PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Motamed C, Kirov K, Combes X et al (2003) Comparison between the Datex-Ohmeda M‑NMT module and a force-displacement transducer for monitoring neuromuscular blockade. Eur J Anaesthesiol 20:467–469PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Murphy GS (2018) Neuromuscular monitoring in the perioperative period. Anesth Analg 126:464–468PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Murphy GS, Brull SJ (2010) Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 111:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Murphy GS, Szokol JW, Avram MJ et al (2013) Postoperative residual neuromuscular blockade is associated with impaired clinical recovery. Anesth Analg 117:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Murphy GS, Szokol JW, Avram MJ et al (2018) Comparison of the TOFscan and the TOF-watch SX during recovery of neuromuscular function. Anesthesiology 129:880–888PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Murphy GS, Szokol JW, Avram MJ et al (2018) Neostigmine administration after spontaneous recovery to a train-of-four ratio of 0.9 to 1.0: a randomized controlled trial of the effect on neuromuscular and clinical recovery. Anesthesiology 128:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Murphy GS, Szokol JW, Avram MJ et al (2015) Residual neuromuscular block in the elderly: incidence and clinical implications. Anesthesiology 123:1322–1336PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Murphy GS, Szokol JW, Franklin M et al (2004) Postanesthesia care unit recovery times and neuromuscular blocking drugs: a prospective study of orthopedic surgical patients randomized to receive pancuronium or rocuronium. Anesth Analg 98:193–200PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Murphy GS, Szokol JW, Marymont JH et al (2008) Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 107:130–137PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Naguib M, Brull SJ, Hunter JM et al (2019) Anesthesiologists’ overconfidence in their perceived knowledge of neuromuscular monitoring and its relevance to all aspects of medical practice: an international survey. Anesth Analg 128:1118–1126PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Naguib M, Brull SJ, Kopman AF et al (2018) Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg 127:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Naguib M, Kopman AF (2018) Neostigmine-induced weakness: what are the facts? Anaesthesia 73:1055–1057PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Naguib M, Kopman AF, Lien CA et al (2010) A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg 111:110–119PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Nemes R, Fulesdi B, Pongracz A et al (2017) Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: a partially randomised placebo controlled trial. Eur J Anaesthesiol 34:609–616PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pandit JJ, Andrade J, Bogod DG et al (2014) 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth 113:549–559PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Panhuizen IF, Gold SJ, Buerkle C et al (2015) Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg−1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth 114:777–784PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Park SK, Son YG, Yoo S et al (2018) Deep vs. moderate neuromuscular blockade during laparoscopic surgery: a systematic review and meta-analysis. Eur J Anaesthesiol 35:867–875PubMedPubMedCentralGoogle Scholar
  85. 85.
    Paton WD, Waud DR (1967) The margin of safety of neuromuscular transmission. J Physiol 191:59–90PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pietraszewski P, Gaszynski T (2013) Residual neuromuscular block in elderly patients after surgical procedures under general anaesthesia with rocuronium. Anaesthesiol Intensive Ther 45:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Plaud B, Debaene B, Donati F et al (2010) Residual paralysis after emergence from anesthesia. Anesthesiology 112:1013–1022PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Pongracz A, Szatmari S, Nemes R et al (2013) Reversal of neuromuscular blockade with sugammadex at the reappearance of four twitches to train-of-four stimulation. Anesthesiology 119:36–42PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Puhringer FK, Rex C, Sielenkamper AW et al (2008) Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 109:188–197PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Rahe-Meyer N, Fennema H, Schulman S et al (2014) Effect of reversal of neuromuscular blockade with sugammadex versus usual care on bleeding risk in a randomized study of surgical patients. Anesthesiology 121:969–977PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ripke F, Fink H, Blobner M (2014) Concepts for the avoidance of residual neuromuscular blockades after the administration of nondepolarizing muscle relaxants. Anasthesiol Intensivmed 55:564–576Google Scholar
  92. 92.
    Rudolph MI, Chitilian HV, Ng PY et al (2018) Implementation of a new strategy to improve the peri-operative management of neuromuscular blockade and its effects on postoperative pulmonary complications. Anaesthesia 73:1067–1078PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Samet A, Capron F, Alla F et al (2005) Single acceleromyographic train-of-four, 100-hertz tetanus or double-burst stimulation: which test performs better to detect residual paralysis? Anesthesiology 102:51–56PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Sasaki N, Meyer MJ, Malviya SA et al (2014) Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes: a prospective study. Anesthesiology 121:959–968PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Schaller SJ, Fink H, Ulm K et al (2010) Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block. Anesthesiology 113:1054–1060PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sorgenfrei IF, Norrild K, Larsen PB et al (2006) Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology 104:667–674PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Sparr HJ, Vermeyen KM, Beaufort AM et al (2007) Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology 106:935–943PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Stewart PA, Liang SS, Li QS et al (2016) The impact of residual neuromuscular blockade, oversedation, and hypothermia on adverse respiratory events in a postanesthetic care unit: a prospective study of prevalence, predictors, and outcomes. Anesth Analg 123:859–868PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tajaate N, Schreiber JU, Fuchs-Buder T et al (2018) Neostigmine-based reversal of intermediate acting neuromuscular blocking agents to prevent postoperative residual paralysis: a systematic review. Eur J Anaesthesiol 35:184–192PubMedPubMedCentralGoogle Scholar
  100. 100.
    Thilen SR, Hansen BE, Ramaiah R et al (2012) Intraoperative neuromuscular monitoring site and residual paralysis. Anesthesiology 117:964–972PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Thomsen JLD, Mathiesen O, Hagi-Pedersen D et al (2017) Improving neuromuscular monitoring and reducing residual neuromuscular blockade with e‑learning: protocol for the multicenter interrupted time series INVERT study. JMIR Res Protoc 6:e192PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Todd MM, Hindman BJ, King BJ (2014) The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department. Anesth Analg 119:323–331PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Unterbuchner C (2018) Neuromuscular block and blocking agents in 2018. Turk J Anaesthesiol Reanim 46:75–80PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Unterbuchner C, Blobner M (2018) Deep neuromuscular blockade: benefits and risks. Anaesthesist 67:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Unterbuchner C, Blobner M, Puhringer F et al (2017) Development of an algorithm using clinical tests to avoid post-operative residual neuromuscular block. BMC Anesthesiol 17:101PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Unterbuchner C, Ziegleder R, Graf B et al (2015) Magnesium-induced recurarisation after reversal of rocuronium-induced neuromuscular block with sugammadex. Acta Anaesthesiol Scand 59:536–540PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Yu B, Ouyang B, Ge S et al (2016) Incidence of postoperative residual neuromuscular blockade after general anesthesia: a prospective, multicenter, anesthetist-blind, observational study. Curr Med Res Opin 32:1–9PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie, Universitätsklinikum RegensburgUniversität RegensburgRegensburgDeutschland

Personalised recommendations