Advertisement

Der Anaesthesist

, Volume 68, Issue 11, pp 770–776 | Cite as

Beatmung und Sauerstofftherapie

Intensivmedizinische Studien aus 2018/2019
  • M. Dietrich
  • C. J. Reuß
  • C. Beynon
  • A. Hecker
  • C. Jungk
  • D. Michalski
  • C. Nusshag
  • K. Schmidt
  • M. Bernhard
  • T. Brenner
  • M. A. WeigandEmail author
Journal Club
  • 789 Downloads

Infobox

Dieser Beitrag ist Teil einer Serie zu den wichtigsten Intensivmedizinische Studien aus 2018/2019. Weitere Teile der Serie sind:

Ventilation and oxygen therapy

Intensive care studies from 2018–2019

Notes

Interessenkonflikt

M. Dietrich, C.J. Reuß, C. Beynon, A. Hecker, C. Jungk, D. Michalski, C. Nusshag, K. Schmidt, M. Bernhard, T. Brenner und M.A. Weigand geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Rhodes A et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septicshock:2016. Crit Care Med 45(3):486–552CrossRefGoogle Scholar
  2. 2.
    Ranieri VM et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23):2526–2533PubMedGoogle Scholar
  3. 3.
    Force ADT et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23):2526–2533Google Scholar
  4. 4.
    Bellani G et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800CrossRefGoogle Scholar
  5. 5.
    Sud S et al (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 36(4):585–599CrossRefGoogle Scholar
  6. 6.
    Mercat A et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655CrossRefGoogle Scholar
  7. 7.
    Fujishima S (2014) Pathophysiology and biomarkers of acute respiratory distress syndrome. J Intensive Care 2(1):32CrossRefGoogle Scholar
  8. 8.
    Fachgesellschaften, A.d.W.M (2017) S3-Leitlinie: Invasive Beatmung und Einsatz extrakorporaler Verfahren bei akuter respiratorischer Insuffizienz. http://www.awmf.org/uploads/tx_szleitlinien/001-021l_S3_Invasive_Beatmung_2017-12.pdf (Erstellt: 4. Dez. 2017). Zugegriffen: 20. März 2018Google Scholar
  9. 9.
    Sauer CM, Yuh DD, Bonde P (2015) Extracorporeal membrane oxygenation use has increased by 433 % in adults in the United States from 2006 to 2011. Asaio J 61(1):31–36CrossRefGoogle Scholar
  10. 10.
    Ratnani I et al (2018) The role and impact of Extracorporeal membrane oxygenation in critical care. Methodist Debakey Cardiovasc J 14(2):110–119PubMedPubMedCentralGoogle Scholar
  11. 11.
    Peek GJ et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374(9698):1351–1363CrossRefGoogle Scholar
  12. 12.
    Combes A et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 378(21):1965–1975CrossRefGoogle Scholar
  13. 13.
    Bernard GR et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3 Pt 1):818–824CrossRefGoogle Scholar
  14. 14.
    Goligher EC et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA 320(21):2251–2259CrossRefGoogle Scholar
  15. 15.
    Petrucci N, De Feo C (2013) Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev 2:CD3844Google Scholar
  16. 16.
    Writing Group for the, P.I. et al (2018) Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA 320(18):1872–1880CrossRefGoogle Scholar
  17. 17.
    Beitler JR et al (2019) Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high PEEP-Fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 321(9):846–857CrossRefGoogle Scholar
  18. 18.
    Talmor D et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104CrossRefGoogle Scholar
  19. 19.
    Ferguson ND et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368(9):795–805CrossRefGoogle Scholar
  20. 20.
    Girard TD et al (2017) An official American thoracic society/American college of chest physicians clinical practice guideline: liberation from mechanical ventilation in critically ill adults. Rehabilitation protocols, ventilator liberation protocols, and cuff leak tests. Am J Respir Crit Care Med 195(1):120–133CrossRefGoogle Scholar
  21. 21.
    Perkins GD et al (2018) Effect of Protocolized weaning with early Extubation to Noninvasive ventilation vs invasive weaning on time to liberation from mechanical ventilation among patients with respiratory failure: the breathe randomized clinical trial. JAMA 320(18):1881–1888CrossRefGoogle Scholar
  22. 22.
    Frat JP et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372(23):2185–2196CrossRefGoogle Scholar
  23. 23.
    Azoulay E et al (2018) Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in Immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 320(20):2099–2107CrossRefGoogle Scholar
  24. 24.
    Casey JD et al (2019) Bag-mask ventilation during tracheal Intubation of critically ill adults. N Engl J Med 380(9):811–821CrossRefGoogle Scholar
  25. 25.
    Chu DK et al (2018) Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 391(10131):1693–1705CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • M. Dietrich
    • 1
  • C. J. Reuß
    • 1
  • C. Beynon
    • 2
  • A. Hecker
    • 3
  • C. Jungk
    • 2
  • D. Michalski
    • 4
  • C. Nusshag
    • 5
  • K. Schmidt
    • 1
  • M. Bernhard
    • 6
  • T. Brenner
    • 1
  • M. A. Weigand
    • 1
    Email author
  1. 1.Klinik für AnästhesiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Neurochirurgische KlinikUniversitätsklinikum HeidelbergHeidelbergDeutschland
  3. 3.Klinik für Allgemein- Viszeral‑, Thorax‑, Transplantations- und KinderchirurgieUniversitätsklinikum Gießen und Marburg, Standort GießenGießenDeutschland
  4. 4.Neurologische Intensivstation und Stroke Unit, Klinik und Poliklinik für NeurologieUniversitätsklinikum Leipzig AöRLeipzigDeutschland
  5. 5.Klinik für Endokrinologie, Stoffwechsel und klinische Chemie/Sektion NephrologieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  6. 6.Zentrale NotaufnahmeUniversitätsklinikum DüsseldorfDüsseldorfDeutschland

Personalised recommendations