Advertisement

Comparison of cervical spine motion during intubation with a C‑MAC D‑Blade® and an LMA Fastrach®

  • D. Özkan
  • S. Altınsoy
  • M. Sayın
  • H. Dolgun
  • J. Ergil
  • A. Dönmez
Originalien

Abstract

Background

This prospective randomized study compared cervical motion during intubation with a C‑MAC D‑Blade® and with a laryngeal mask airway LMA Fastrach®.

Material and methods

The participants in this study were 52 ASA I-III patients aged 18–70 years and assigned for elective cervical discectomy. The patients were randomly selected for intubation with a C‑MAC D‑Blade® (group V) or an LMA Fastrach® laryngeal airway (group F). Both groups received the same induction of anaesthesia. The first lateral view was X‑rayed while the head and neck were in a neutral supine position and the second exposure was taken during the passage of the endotracheal tube through the vocal cords for group V and during the advance of the endotracheal tube for group F. The occiput-C1 (C0–C1), C1–C2 and C2–5 angles were measured. The angle formed by the line between the occipital protuberance and anterior process of the foramen magnum and the line between the central point of C1 spinous process and the anterior process of the foramen magnum was defined as angle A. The differences between the angles were calculated. Overall intubation success and first-pass success (success at the first attempt) were recorded.

Results

The change in angulations between C0–C1 during intubation was significantly lower in group F than in group V (2.780 ± 2.10 vs. 6.040 ± 4.10, p = 0.007). Before intubation, angle A was 14.40 ± 3.90 in group V and 13.80 ± 3.70 in group F (p = 0.627). During intubation, angle A was significantly smaller for group V than for group F (9.10 ± 2.40 vs. 10.70 ± 2.90, p = 0.04). The number of successful intubations were significantly higher in group V (100% of intubations were successful on the first attempt for group V, vs. 80% for group F, p = 0.023).

Conclusion

Intubation with both a C‑MAC D‑Blade and a Fastrach LMA resulted in cervical motion but within safe ranges. Intubation with a C-mac D blade might be preferred because the Fastrach LMA may result in more failed intubation attempts in patients with cervical spine disorders.

Keywords

Video laryngoscope Supraglottic airway Cervical motion Intubation complication Intubation success 

Vergleich der zervikalen Wirbelsäulenbewegung unter Intubation mittels C‑MAC D‑Blade® und LMA Fastrach®

Zusammenfassung

Hintergrund

Diese prospektiv-randomisierte Studie vergleicht die zervikale Bewegung während der Intubation mit C‑MAC D‑Blade® (Gruppe V) mit der LMA Fastrach® (Gruppe F).

Material und Methoden

Untersucht wurden 52 ASA-I- bis -III-Patienten im Alter von 18 bis 70 Jahren, welche sich einer elektiven zervikalen Nukleotomie unterzogen. Die Zuteilung der Patienten erfolgte randomisiert in die Gruppen C-MAC D‑Blade® (Gruppe V) oder LMA-Fastrach® (Gruppe F). Beide Randomisierungsarme erhielten eine identische Anästhesieeinleitung. Es erfolgte eine initiale Röntgenaufnahme von Kopf und Hals in lateraler Ansicht bei neutraler Rückenlagerung. Eine zweite Aufnahme erfolgte während des Vorschubs des Endotrachealtubus durch die Stimmbänder für Gruppe V und während des Vorschubs des Endotrachealtubus für Gruppe F. Die Okziput-C1 (C0–C1)-, C1- bis C2 und C2- bis 5 Winkel wurden gemessen. Der durch die Linie zwischen der Protuberantia occipitalis und Processus anterior des Foramen magnum sowie die Linie zwischen dem zentralen Punkt des Processus spinosus C1 und dem Processus anterior des Foramen magnum gebildete Winkel wurde als Winkel A definiert. Die Unterschiede zwischen den Winkeln wurden berechnet. Insgesamt wurden Intubationserfolg und First-pass-Erfolg (Erfolg auf Anhieb) dokumentiert.

Ergebnisse

Die Veränderung der Winkel zwischen C0–C1 während der Intubation war in Gruppe F signifikant niedriger als in Gruppe V (2,78 ± 2,1 vs. 6,04 ± 4,1; p = 0,007). Vor der Intubation betrug der Winkel A 14,4 ± 3,9 in Gruppe V und 13,8 ± 3,7 in Gruppe F (p = 0,627). Während der Intubation war der Winkel A in Gruppe V deutlich kleiner als in Gruppe F (9,1 ± 2,4 vs. 10,7 ± 2,9; p = 0,04). Die Anzahl der erfolgreichen Intubationen war in Gruppe V signifikant höher (100 % der Intubationen waren beim ersten Versuch in Gruppe V erfolgreich, verglichen mit 80 % in Gruppe F; p = 0,023).

Schlussfolgerung

Die Intubation, sowohl mittels C‑MAC D‑Blade® als auch mittels LMA Fastrach®, geht mit einer zervikalen Bewegung einher, welche sich allerdings innerhalb eines sicheren Bereichs bewegt. Die Intubation mittels C‑MAC D‑Blade® sollte bevorzugt durchgeführt werden, da die Fastrach LMA® mit einer höheren Anzahl an fehlgeschlagenen Intubationsversuchen bei Patienten mit Erkrankungen der Halswirbelsäule assoziiert ist

Schlüsselwörter

Videolaryngoscopie Supraglottische Luftwege Zervikale Bewegung Intubationskomplikation Intubationserfolg 

Notes

Compliance with ethical guidelines

Conflict of interest

D. Özkan, S.ş. Altınsoy, M. Sayın, H. Dolgun, J. Ergil and A. Dönmez declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hastings RH, Vigil AC, Hanna R, Yang BY, Sartoris DJ (1995) Cervical spine movement during laryngoscopy with the Bullard, Macintosh, and Miller laryngoscopes. Anesthesiology 82:859–869CrossRefGoogle Scholar
  2. 2.
    Waltl B, Melischek M, Schuschnig C et al (2001) Tracheal intubation and cervical spine excursion: direct laryngoscopy vs. intubating laryngeal mask. Anaesthesia 56:221–226CrossRefGoogle Scholar
  3. 3.
    Sahin A, Salman MA, Erden IA, Aypar U (2004) Upper cervical vertebrae movement during intubating laryngeal mask, fibreoptic and direct laryngoscopy: a video-fluoroscopic study. Eur J Anaesthesiol 21:819–823CrossRefGoogle Scholar
  4. 4.
    Peterson GN, Domino KB, Caplan RA, Posner KL, Lee LA, Cheney FW (2005) Management of the difficult airway: a closed claims analysis. Anesthesiology 103:33–39CrossRefGoogle Scholar
  5. 5.
    Cavus E, Neumann T, Doerges V et al (2011) First clinical evaluation of the C‑MAC D‑Blade videolaryngoscope during routine and difficult intubation. Anesth Analg 112:382–385CrossRefGoogle Scholar
  6. 6.
    Brimacombe J, Keller C, Künzel KH et al (2000) Cervical spine motion during airway management: a cinefluoroscopic study of the posteriorly destabilized third cervical vertebrae in human cadavers. Anesth Analg 91:1274–1278CrossRefGoogle Scholar
  7. 7.
    Al-Qasmi A, Al-Alawi W, Malik AM, Khan RM, Kaul N (2013) Assessment of Truflex articulating stylet versus conventional rigid Portex stylet as an intubation guide with the D‑blade of C‑Mac videolaryngoscope during elective tracheal intubation: study protocol for a randomized controlled trial. Trials 14:298CrossRefGoogle Scholar
  8. 8.
    ILMA Lit (2006) LMA Fastrach reusable & LMA Fastrach single use instruction manual. LMA North America, San DiegoGoogle Scholar
  9. 9.
    Kim TK, Son JD, Seo H, Lee YS, Bae J, Park HP (2017) A randomized crossover study comparing cervical spine motion during Intubation between two lightwand intubation techniques in patients with simulated cervical immobilization: laryngoscope-assisted versus conventional lightwand intubation. Anesth Analg 125:485–490CrossRefGoogle Scholar
  10. 10.
    Nileshwar A, Thudamaladinne A (2007) Comparison of intubating laryngeal mask airway and Bullard laryngoscope for oro-tracheal intubation in adult patients with simulated limitation of cervical movements. Br J Anaesth 99:292–296CrossRefGoogle Scholar
  11. 11.
    Prasarn ML, Conrad B, Rubery PT et al (2012) Comparison of 4 airway devices on cervical spine alignment in a cadaver model with global ligamentous instability at C5–C6. Spine (Phila Pa 1976) 37:476–481CrossRefGoogle Scholar
  12. 12.
    Turkstra TP, Craen RA, Pelz DM, Gelb AW (2005) Cervical spine motion: a fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg. 2005 Sep;101(3):910–5, table of contents. Erratum. Anesth Analg 101:1011CrossRefGoogle Scholar
  13. 13.
    Crosby ET (2006) Airway management in adults after cervical spine trauma. Anesthesiology 104:1293–1318CrossRefGoogle Scholar
  14. 14.
    Wong DM, Prabhu A, Chakraborty S, Tan G, Massicotte EM, Cooper R (2009) Cervical spine motion during flexible bronchoscopy compared with the Lo-Pro GlideScope. Br J Anaesth 102:424–430CrossRefGoogle Scholar
  15. 15.
    Souvatzis X, Askitopoulou H (2008) Airway management in cervical spinal cord injured patients: a survey of European emergency physicians’ clinical practice. Eur J Emerg Med 15:344–347CrossRefGoogle Scholar
  16. 16.
    Kramer A, Müller D, Pförtner R, Mohr C, Groeben H (2015) Fibreoptic vs videolaryngoscopic (C-MAC(®) D‑BLADE) nasal awake intubation under local anaesthesia. Anaesthesia 70:400–406CrossRefGoogle Scholar
  17. 17.
    Yildirim A, Kiraz HA, Ağaoğlu İ, Akdur O (2017) Comparison of Macintosh, McCoy and C‑MAC D‑Blade video laryngoscope intubation by prehospital emergency health workers: a simulation study. Intern Emerg Med 12:91–97CrossRefGoogle Scholar
  18. 18.
    Asai T, Morris S (1994) The laryngeal mask airway—its features, effects and role. Can J Anaesth 41:930–960CrossRefGoogle Scholar
  19. 19.
    Moller F, Andres AH, Langenstein H (2000) Intubating laryngeal mask airway (ILMA) seems to be an ideal device for blind intubation in case of immobile spine. Br J Anaesth 85:493–495PubMedGoogle Scholar
  20. 20.
    Ching RP, Watson NA, Carter JW, Tencer AF (1997) The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model. Spine (Phila Pa 1976) 22:1710–1715CrossRefGoogle Scholar
  21. 21.
    Turkstra TP, Pelz DM, Jones PM (2009) Cervical spine motion: a fluoroscopic comparison of the AirTraq laryngoscope versus the Macintosh laryngoscope. Anesthesiology 111:97–101CrossRefGoogle Scholar
  22. 22.
    Levene HB, Wang MY, Green BA (2012) Spinal cord trauma. In: Irwin RS, Rippe JM (eds) Irwin and Rippe’s intensive care medicine, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1691–1704Google Scholar
  23. 23.
    Lennarson PJ, Smith D, Todd MM et al (2000) Segmental cervical spine motion during orotracheal intubation of the intact and injured spine with and without external stabilization. J Neurosurg 92:201–206PubMedGoogle Scholar
  24. 24.
    Lennarson PJ, Smith DW, Sawin PD, Todd MM, Sato Y, Traynelis VC (2001) Cervical spinal motion during intubation: efficacy of stabilization maneuvers in the setting of complete segmental instability. J Neurosurg 94:265–270PubMedGoogle Scholar
  25. 25.
    Bhardwaj N, Jain K, Rao M, Mandal AK (2013) Assessment of cervical spine movement during laryngoscopy with Macintosh and Truview laryngoscopes. J Anaesthesiol Clin Pharmacol 29:308–312CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • D. Özkan
    • 1
    • 3
  • S. Altınsoy
    • 1
  • M. Sayın
    • 1
  • H. Dolgun
    • 2
  • J. Ergil
    • 1
  • A. Dönmez
    • 1
  1. 1.Department of Anesthesiology and ReanimationMinistry of Health Diskapi Yildirim Beyazit Training and Research HospitalAnkaraTurkey
  2. 2.Department of NeurosurgeryMinistry of Health Diskapi Yildirim Beyazit Training and Research HospitalAnkaraTurkey
  3. 3.Cayyolu AnkaraTurkey

Personalised recommendations