Advertisement

Der Anaesthesist

, Volume 68, Issue 2, pp 97–103 | Cite as

Schmerzinhibition durch Opioide – neue Konzepte

  • C. SteinEmail author
Klinische Pharmakologie
  • 432 Downloads

Zusammenfassung

Hintergrund

Opioide sind die ältesten und stärksten Schmerzmedikamente, allerdings sind sie durch gefährliche Nebenwirkungen wie Atemdepression, Suchtpotenzial, Sedierung, Übelkeit und Obstipation limitiert. Die klinische Anwendung ist unbestritten in der Behandlung von akutem (z.B. perioperativem) und tumorassoziiertem Schmerz, jedoch hat die Langzeitanwendung bei chronischem Nichttumorschmerz zunehmend Kritik erfahren und zur aktuellen „Opioidkrise“ beigetragen.

Fragestellung und Ziele

Diese Übersicht behandelt pharmakologische Grundlagen und neue Forschungsstrategien zur Reduktion von Nebenwirkungen. Mechanismen der Schmerzentstehung und -inhibition sowie anderer Opioidwirkungen werden beschrieben. Zur Illustration der klinischen Situation und medizinischer Probleme werden pathophysiologische Veränderungen des Opioidsystems wie Plastizität von Opioidrezeptoren, Signalwegen, endogener Opioide, zentraler und peripherer Wirkorte diskutiert.

Schlussfolgerungen

Der epidemische Fehlgebrauch und Missbrauch von Opioiden hat gezeigt, dass große Wissenslücken in der Behandlung von chronischem Schmerz bestehen, dass Interessenkonflikte und die Validität von Modellen in der Medikamentenentwicklung stärker berücksichtigt werden müssen, und dass dringend neue Schmerzmedikamente ohne Suchtpotenzial gebraucht werden. Aktuell erscheinen die Verstärkung endogener Opioidwirkungen und die selektive Aktivierung peripherer Opioidrezeptoren am vielversprechendsten.

Schlüsselwörter

Analgesie Entzündung Verletzung Opioidrezeptoren Signalwege 

Pain inhibition by opioids—new concepts

Abstract

Background

Opioids are the oldest and most potent drugs for the treatment of severe pain but they are burdened by detrimental side effects, such as respiratory depression, addiction potential, sedation, nausea and constipation. Their clinical application is undisputed in the treatment of acute (e.g. perioperative) and cancer pain but their long-term use in chronic pain has met increasing criticism and has contributed to the current “opioid crisis”.

Objectives

This article reviews the pharmacological principles and new research strategies aiming at novel opioids with reduced side effects. The basic mechanisms underlying pain and opioid analgesia and other effects of opioids are outlined. To illustrate the clinical situation and medical problems, the plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic and side effects are discussed.

Conclusion

The epidemic of opioid misuse has shown that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be more intensively considered in the context of drug development and that novel analgesics with less addictive potential are urgently needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and the selective activation of peripheral opioid receptors.

Keywords

Analgesia Inflammation Injury Opioid receptors Signaling pathways 

Notes

Förderung

Unterstützung durch Bundesministerium für Bildung und Forschung (0316177B/C1, 01EC1403E, 01EC1403F) und Europäische Kommission (EU FP7-HEALTH-2013-INNOVATION-1; No. 602891-2).

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Stein ist als Erfinder im US Patent 9133120 B2 und Europäischen Patent 2 801 046 gelistet.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Albert-Vartanian A, Boyd MR, Hall AL et al (2016) Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J Clin Pharm Ther 41:371–382PubMedGoogle Scholar
  2. 2.
    Altarifi AA, David B, Muchhala KH et al (2017) Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol 31:730–739PubMedPubMedCentralGoogle Scholar
  3. 3.
    Baron R, Hans G, Dickenson AH (2013) Peripheral input and its importance for central sensitization. Ann Neurol 74:630–636PubMedGoogle Scholar
  4. 4.
    Basbaum AI, Bautista DM, Scherrer G et al (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284PubMedPubMedCentralGoogle Scholar
  5. 5.
    Bassiony MM, Salah El-Deen GM, Yousef U et al (2015) Adolescent tramadol use and abuse in Egypt. Am J Drug Alcohol Abuse 41:206–211PubMedGoogle Scholar
  6. 6.
    Basso L, Boue J, Auge C et al (2018) Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain 159:331–341PubMedGoogle Scholar
  7. 7.
    Basso L, Bourreille A, Dietrich G (2015) Intestinal inflammation and pain management. Curr Opin Pharmacol 25:50–55PubMedGoogle Scholar
  8. 8.
    Becker WC, Fiellin DA (2017) Abuse-deterrent opioid formulations—putting the potential benefits into perspective. N Engl J Med 376:2103–2105PubMedGoogle Scholar
  9. 9.
    Berge OG (2011) Predictive validity of behavioural animal models for chronic pain. Br J Pharmacol 164:1195–1206PubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhala N, Emberson J, Merhi A et al (2013) Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382:769–779PubMedGoogle Scholar
  11. 11.
    Celik MO, Labuz D, Henning K et al (2016) Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides. Brain Behav Immun 57:227–242PubMedGoogle Scholar
  12. 12.
    Chou R, Gordon DB, de Leon-Casasola OA et al (2016) Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, executive committee, and administrative council. J Pain 17:131–157PubMedGoogle Scholar
  13. 13.
    Compton P, Miotto K, Elashoff D (2004) Precipitated opioid withdrawal across acute physical dependence induction methods. Pharmacol Biochem Behav 77:263–268PubMedGoogle Scholar
  14. 14.
    Cox BM (2013) Recent developments in the study of opioid receptors. Mol Pharmacol 83:723–728PubMedGoogle Scholar
  15. 15.
    Del Vecchio G, Spahn V, Stein C (2017) Novel opioid analgesics and side effects. Acs Chem Neurosci 8:1638–1640PubMedGoogle Scholar
  16. 16.
    Dembla S, Behrendt M, Mohr F et al (2017) Anti-nociceptive action of peripheral mu-opioid receptors by G‑beta-gamma protein-mediated inhibition of TRPM3 channels. Elife 6:e26280PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dosen-Micovic L, Ivanovic M, Micovic V (2006) Steric interactions and the activity of fentanyl analogs at the mu-opioid receptor. Bioorg Med Chem 14:2887–2895PubMedGoogle Scholar
  18. 18.
    Dowell D, Haegerich TM, Chou R (2016) CDC guideline for prescribing Opioids for chronic pain—United States, 2016. JAMA 315:1624–1645PubMedGoogle Scholar
  19. 19.
    Endres-Becker J, Heppenstall PA, Mousa SA et al (2007) Mu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol Pharmacol 71:12–18PubMedGoogle Scholar
  20. 20.
    Eriksen J, Sjogren P, Bruera E et al (2006) Critical issues on opioids in chronic non-cancer pain: an epidemiological study. Pain 125:172–179PubMedGoogle Scholar
  21. 21.
    Fordyce WE (1992) Opioids, pain and behavioral outcomes. APS J 1:282–284Google Scholar
  22. 22.
    Gonzalez-Rodriguez S, Quadir MA, Gupta S et al (2017) Polyglycerol-opioid conjugate produces analgesia devoid of side effects. Elife 6:e27081PubMedPubMedCentralGoogle Scholar
  23. 23.
    Graham T, Grocott P, Probst S et al (2013) How are topical opioids used to manage painful cutaneous lesions in palliative care? A critical review. Pain 154:1920–1928PubMedGoogle Scholar
  24. 24.
    Haffajee RL, Mello MM (2017) Drug companies’ liability for the opioid epidemic. N Engl J Med 377:2301–2305PubMedGoogle Scholar
  25. 25.
    Hill R, Disney A, Conibear A et al (2018) The novel mu–opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. Br J Pharmacol 175:2653–2661PubMedPubMedCentralGoogle Scholar
  26. 26.
    Imam MZ, Kuo A, Ghassabian S et al (2018) Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 131:238–255PubMedGoogle Scholar
  27. 27.
    Jagla CA, Martus P, Stein C (2014) Peripheral opioid receptor blockade increases postoperative morphine demands—a randomized, double-blind, placebo-controlled trial. Pain 155:2056–2062PubMedGoogle Scholar
  28. 28.
    Law PY, Reggio PH, Loh HH (2013) Opioid receptors: toward separation of analgesic from undesirable effects. Trends Biochem Sci 38:275–282PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee LA, Caplan RA, Stephens LS et al (2015) Postoperative opioid-induced respiratory depression: a closed claims analysis. Anesthesiology 122:659–665PubMedGoogle Scholar
  30. 30.
    Leung PTM, Macdonald EM, Stanbrook MB et al (2017) A 1980 letter on the risk of opioid addiction. N Engl J Med 376:2194–2195PubMedGoogle Scholar
  31. 31.
    Li JG, Chen C, Yin J et al (1999) ASP147 in the third transmembrane helix of the rat mu opioid receptor forms ion-pairing with morphine and naltrexone. Life Sci 65:175–185PubMedGoogle Scholar
  32. 32.
    Li Y, van den Pol AN (2008) Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J Neurosci 28:2814–2819PubMedGoogle Scholar
  33. 33.
    Livingston KE, Traynor JR (2018) Allostery at opioid receptors: modulation with small molecule ligands. Br J Pharmacol 175:2846–2856PubMedGoogle Scholar
  34. 34.
    Lüscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11:301–315PubMedPubMedCentralGoogle Scholar
  35. 35.
    Machelska H (2011) Dual peripheral actions of immune cells in neuropathic pain. Arch Immunol Ther Exp (Warsz) 59:11–24Google Scholar
  36. 36.
    Machelska H, Pflüger M, Weber W et al (1999) Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J Pharmacol Exp Ther 290:354–361PubMedGoogle Scholar
  37. 37.
    Meissner W, Komann M, Erlenwein J et al (2017) The quality of postoperative pain therapy in German hospitals. Dtsch Arztebl Int 114:161–167PubMedPubMedCentralGoogle Scholar
  38. 38.
    Montandon G, Ren J, Victoria NC et al (2016) G‑protein-gated inwardly rectifying potassium channels modulate respiratory depression by opioids. Anesthesiology 124:641–650PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mousa SA, Straub RH, Schäfer M et al (2007) Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 66:871–879PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nockemann D, Rouault M, Labuz D et al (2013) The K channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med 5:1263–1277PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pattinson KT (2008) Opioids and the control of respiration. Br J Anaesth 100:747–758PubMedGoogle Scholar
  42. 42.
    Psaty BM, Merrill JO (2017) Addressing the opioid epidemic—opportunities in the postmarketing setting. N Engl J Med 376:1502–1504PubMedGoogle Scholar
  43. 43.
    Quallo T, Alkhatib O, Gentry C et al (2017) G protein betagamma subunits inhibit TRPM3 ion channels in sensory neurons. Elife 6:e26138PubMedPubMedCentralGoogle Scholar
  44. 44.
    Raffa RB, Taylor R Jr., Pergolizzi JV Jr. (2014) Sequestered naltrexone in sustained release morphine or oxycodone—a way to inhibit illicit use? Expert Opin Drug Saf 13:181–190PubMedGoogle Scholar
  45. 45.
    Raja SN (2012) Modulating pain in the periphery: gene-based therapies to enhance peripheral opioid analgesia: bonica lecture, ASRA 2010. Reg Anesth Pain Med 37:210–214PubMedPubMedCentralGoogle Scholar
  46. 46.
    Reinecke H, Weber C, Lange K et al (2015) Analgesic efficacy of opioids in chronic pain: recent meta-analyses. Br J Pharmacol 172:324–333PubMedGoogle Scholar
  47. 47.
    Richards N, McMahon SB (2013) Targeting novel peripheral mediators for the treatment of chronic pain. Br J Anaesth 111:46–51PubMedGoogle Scholar
  48. 48.
    Rittner HL, Brack A, Stein C (2008) Pain and the immune system. Br J Anaesth 101:40–44PubMedGoogle Scholar
  49. 49.
    Rodriguez-Gaztelumendi A, Spahn V, Labuz D et al (2018) Analgesic effects of a novel pH-dependent mu-opioid receptor agonist in models of neuropathic and abdominal pain. Pain.  https://doi.org/10.1097/j.pain.0000000000001328 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Roques BP, Fournie-Zaluski MC, Wurm M (2012) Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov 11:292–310PubMedGoogle Scholar
  51. 51.
    Schmid CL, Kennedy NM, Ross NC et al (2017) Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171:1165–1175.e13PubMedPubMedCentralGoogle Scholar
  52. 52.
    Schreiter A, Gore C, Labuz D et al (2012) Pain inhibition by blocking leukocytic and neuronal opioid peptidases in peripheral inflamed tissue. FASEB  J 26:5161–5171PubMedGoogle Scholar
  53. 53.
    Schubert I, Ihle P, Sabatowski R (2013) Increase in opiate prescription in Germany between 2000 and 2010: a study based on insurance data. Dtsch Arztebl Int 110:45–51PubMedPubMedCentralGoogle Scholar
  54. 54.
    Schuchat A, Houry D, Guy GP Jr. (2017) New data on opioid use and prescribing in the United States. JAMA 318:425–426PubMedPubMedCentralGoogle Scholar
  55. 55.
    Schumacher MA, Basbaum AI, Naidu RK (2015) Opioid agonists and antagonists. In: Katzung BG, Trevor AJ (Hrsg) Basic and clinical pharmacology. McGraw-Hill, New York, S 531–551Google Scholar
  56. 56.
    Smith SM, Dart RC, Katz NP et al (2013) Classification and definition of misuse, abuse, and related events in clinical trials: ACTTION systematic review and recommendations. Pain 154:2287–2296PubMedPubMedCentralGoogle Scholar
  57. 57.
    Soergel DG, Subach RA, Burnham N et al (2014) Biased agonism of the mu-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155:1829–1835PubMedGoogle Scholar
  58. 58.
    Spahn V, Del Vecchio G, Labuz D et al (2017) A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355:966–969PubMedGoogle Scholar
  59. 59.
    Spahn V, Del Vecchio G, Rodriguez-Gaztelumendi A et al (2018) Opioid receptor signaling, analgesic and side effects induced by a computationally designed pH-dependent agonist. Sci Rep 8:8965PubMedPubMedCentralGoogle Scholar
  60. 60.
    Spahn V, Stein C (2017) Targeting delta opioid receptors for pain treatment: drugs in phase I and II clinical development. Expert Opin Investig Drugs 26:155–160PubMedGoogle Scholar
  61. 61.
    Stein C (1997) Opioid treatment of chronic nonmalignant pain. Anesth Analg 84:912–914PubMedGoogle Scholar
  62. 62.
    Stein C (2016) Opioid receptors. Annu Rev Med 67:433–451PubMedGoogle Scholar
  63. 63.
    Stein C (2018) New concepts in opioid analgesia. Expert Opin Investig Drugs 27:756–757.  https://doi.org/10.1080/13543784.2018.1516204 CrossRefGoogle Scholar
  64. 64.
    Stein C, Comisel K, Haimerl E et al (1991) Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med 325:1123–1126PubMedGoogle Scholar
  65. 65.
    Stein C, Hassan AH, Przewlocki R et al (1990) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci U S A 87:5935–5939PubMedPubMedCentralGoogle Scholar
  66. 66.
    Stein C, Hassan AHS, Lehrberger K et al (1993) Local analgesic effect of endogenous opioid peptides. Lancet 342:321–324PubMedGoogle Scholar
  67. 67.
    Stein C, Küchler S (2013) Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci 34:303–312PubMedGoogle Scholar
  68. 68.
    Stein C, Millan MJ, Shippenberg TS et al (1989) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther 248:1269–1275PubMedGoogle Scholar
  69. 69.
    Stein C, Pflüger M, Yassouridis A et al (1996) No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. J Clin Investig 98:793–799PubMedGoogle Scholar
  70. 70.
    Stevens CW (2015) Bioinformatics and evolution of vertebrate nociceptin and opioid receptors. Vitam Horm 97:57–94PubMedGoogle Scholar
  71. 71.
    Szigethy E, Knisely M, Drossman D (2018) Opioid misuse in gastroenterology and non-opioid management of abdominal pain. Nat Rev Gastroenterol Hepatol 15:168–180PubMedGoogle Scholar
  72. 72.
    Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339:166–172PubMedPubMedCentralGoogle Scholar
  73. 73.
    Vadivelu N, Mitra S, Hines RL (2011) Peripheral opioid receptor agonists for analgesia: a comprehensive review. J Opioid Manag 7:55–68PubMedGoogle Scholar
  74. 74.
    Valverde A, Gunkel CI (2005) Pain management in horses and farm animals. J Vet Emerg Crit Care 15:295–307Google Scholar
  75. 75.
    Viscusi ER, Webster L, Kuss M et al (2016) A randomized, phase 2 study investigating TRV130, a biased ligand of the mu-opioid receptor, for the intravenous treatment of acute pain. Pain 157:264–272PubMedGoogle Scholar
  76. 76.
    Vowles KE, McEntee ML, Julnes PS et al (2015) Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain 156:569–576PubMedGoogle Scholar
  77. 77.
  78. 78.
    Wacker D, Stevens RC, Roth BL (2017) How Ligands illuminate GPCR molecular pharmacology. Cell 170:414–427PubMedPubMedCentralGoogle Scholar
  79. 79.
    Wieschowski S, Chin WWL, Federico C et al (2018) Preclinical efficacy studies in investigator brochures: do they enable risk-benefit assessment? Plos Biol 16:e2004879PubMedPubMedCentralGoogle Scholar
  80. 80.
    Williams JT, Ingram SL, Henderson G et al (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65:223–254PubMedPubMedCentralGoogle Scholar
  81. 81.
    Wood E (2018) Strategies for reducing opioid-overdose deaths—lessons from Canada. N Engl J Med 378:1565–1567PubMedGoogle Scholar
  82. 82.
    Yekkirala AS, Roberson DP, Bean BP et al (2017) Breaking barriers to novel analgesic drug development. Nat Rev Drug Discov 16:545–564PubMedPubMedCentralGoogle Scholar
  83. 83.
    Zamponi GW, Currie KP (2013) Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 1828:1629–1643PubMedGoogle Scholar
  84. 84.
    Zeng C, Gao SG, Cheng L et al (2013) Single-dose intra-articular morphine after arthroscopic knee surgery: a meta-analysis of randomized placebo-controlled studies. Arthroscopy 29:1450–1458 e2PubMedGoogle Scholar
  85. 85.
    Zöllner C, Shaqura MA, Bopaiah CP et al (2003) Painful inflammation-induced increase in mu-opioid receptor binding and G‑protein coupling in primary afferent neurons. Mol Pharmacol 64:202–210PubMedGoogle Scholar
  86. 86.
    Zöllner C, Stein C (2007) Opioids. In: Stein C (Hrsg) Analgesia. Handbook of Experimental Pharmacology, Bd. 177. Springer, Heidelberg, S 31–63Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und operative IntensivmedizinCharité Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinDeutschland

Personalised recommendations