Advertisement

Der Anaesthesist

, Volume 67, Issue 8, pp 617–634 | Cite as

Medikamente zur intravenösen Narkoseinduktion: Ketamin, Midazolam und Synopsis der gängigen Hypnotika

  • E. Halbeck
  • C. Dumps
  • D. Bolkenius
CME
  • 2.2k Downloads

Zusammenfassung

Schlusspunkte der Reihe „Medikamente zur intravenösen Narkoseinduktion“ bilden Ketamin und Midazolam. Beide können als Monotherapeutikum angewendet werden; dies ist in praxi aber unüblich. Ihre Monogabe ist auf wenige sehr spezielle Indikationen und klinische Situationen beschränkt. Häufiger finden sich Kombinationen von Ketamin und Midazolam bzw. mit einer der Alternativen Propofol, den Barbituraten und Etomidat. Ursächlich sind Wirkungen und Nebenwirkungen beider Substanzen, deren positive Eigenschaften eher als Supplement zur Geltung kommen. Im abschließenden Vergleich werden die behandelten Induktionshypnotika einander gegenübergestellt. Der Einsatz in bestimmten klinischen Konstellationen und bei speziellen Patientengruppen wird für jedes einzelne Präparat bewertet. Es wird hervorgehoben, welches Medikament in welcher Situation am sinnvollsten erscheint. Da Methohexital mittlerweile in sehr wenigen klinischen Situationen verabreicht wird, wird bei der vergleichenden Bewertung auf diese Substanz verzichtet.

Schlüsselwörter

Induktionshypnotika Narkosemedikamente Pharmakokinetik Pharmakodynamik Sedativum 

Drugs for intravenous induction of anesthesia: ketamine, midazolam and synopsis of current hypnotics

Abstract

Ketamine and midazolam form the endpoint of a series of articles about intravenous induction of anesthesia . Both substances can be used as single induction hypnotic drugs; however, in practice, this is unusual. Both substances, with the exception of a few very specific indications and clinical situations, are more frequently used in combination or with one of the more common alternatives propofol, barbiturates and etomidate. The reasons are the activity and side effects of both substances and their positive characteristics are used more as a supplement. In the concluding comparison the five discussed induction hypnotics are judged against each other. The use in certain clinical constellations and in special patient populations is evaluated individually for each substance. It is highlighted which drug appears most appropriate in which situation. As methohexital is nowadays only administered in very few clinical situations, this substance is not included in the comparative assessment.

Keywords

Induction hypnotics Anesthetic drugs Pharmacokinetics Pharmacodynamics Sedatives 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

E. Halbeck, C. Dumps und D. Bolkenius geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Roissant R, Werner C, Zwißler B (2012) Ketamin, Pharmakokinetik. In: Die Anästhesiologie, 3. Aufl., S 224–231CrossRefGoogle Scholar
  2. 2.
    Dorandeu F (2013) Happy 50th Anniversary Ketamine. CNS Neurosci Ther 19:369CrossRefPubMedGoogle Scholar
  3. 3.
    Li L, Vlisides PE (2016) Ketamine: 50 Years of modulating the mind. Front Hum Neurosci 10:612PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19:370–380CrossRefPubMedGoogle Scholar
  5. 5.
    Lodge D, Mercier MS (2015) Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol 172:4254–4276CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Domino EF, Chodoff P, Corssen G (1965) Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291.  https://doi.org/10.1002/cpt196563279 CrossRefPubMedGoogle Scholar
  7. 7.
    Domino EF (2010) Taming the Ketamine Tiger.1965. Anesthesiology 113:678–684PubMedGoogle Scholar
  8. 8.
    Adams HA, Werner C (1997) Vom Razemat zum Eutomer: (S)-Ketamin, Renaissance einer Substanz? Anaesthesist 46:1026–1042CrossRefPubMedGoogle Scholar
  9. 9.
    Akporehwe NA, Wilkinson PR, Quibell R, Akporehwe KA (2006) Ketamine: a misunderstood analgesic? Clinicians shouldn’t be put off by its reputation as an anaesthetic and drug of abuse. Br Med J 332:1466CrossRefGoogle Scholar
  10. 10.
    Jansen KL, Darracot-Cancovic R (2001) The nonmedical use of ketamine, part two: a review of problem use and dependence. J Psychoactive Drugs 33(2):151–158.  https://doi.org/10.1080/02791072.2001.10400480 CrossRefPubMedGoogle Scholar
  11. 11.
    Pfizer (2017) Fachinformation Ketanest Stand September 2017. www.pfizermed.de (Erstellt: 09.2017). Zugegriffen: 14. Nov. 2017Google Scholar
  12. 12.
    Gorlin AW, Rosenfeld DM, Ramakrishna H (2016) Intravenous sub-anesthetic ketamine for perioperative analgesia. J Anaesthesiol Clin Pharmacol 32:160–167CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pabelick CM, Rehder K, Jones KA, Shumway R, Lindahl SGE, Warner DO (1997) Stereospecific effects of ketamine enantiomers on canine tracheal smooth muscle. Br J Pharmacol 121:1378–1382CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kohrs R, Durieux M (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193PubMedGoogle Scholar
  15. 15.
    Oye J, Paulsen O, Manset A (1992) Effects of ketamine on sensory perception: evidence for a role of N‑methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213PubMedGoogle Scholar
  16. 16.
    Eckle VS, Hucklenbruch C, Todorovic SM (2009) Was wissen wir über Narkosemechanismen? Bewusstlosigkeit, Bewegungslosigkeit und Amnesie. Anästhesist 58(11):1144–1149.  https://doi.org/10.1007/s00101-009-1618-9 CrossRefGoogle Scholar
  17. 17.
    Kress HG (1997) Wirkmechanismen von Ketamin. Anästhesist 46(Suppl 1):S8–S19CrossRefGoogle Scholar
  18. 18.
    Hayashi Y, Kawaji K, Sun L, Zhang X, Koyano K, Yokoyama T et al (2011) Microglial Ca2+-activated K+ channels are possible molecular targets for the analgesic effects of S‑ketamine on neuropathic pain. J Neurosci 31:17370–17382.  https://doi.org/10.1523/JNEUROSCI.4152-11.2011 CrossRefPubMedGoogle Scholar
  19. 19.
    Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI et al (2016) NMDAR inhibition-indipendent antidepressant action of ketamine metabolites. Nature 533:481–486CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    White PF, Way WL, Trevor AJ (1982) Ketamine—its pharmacology an therapeutic uses. Anesthesiology 56:119–136CrossRefPubMedGoogle Scholar
  21. 21.
    Himmelseher S, Pfenninger E (1998) Die klinische Anwendung von S(+)-Ketamin. Eine Standortbestimmung. Anasthesiol Intensivmed Notfallmed Schmerzther 33:764–770CrossRefPubMedGoogle Scholar
  22. 22.
    Rao LK, Flaker AM, Friedel CC, Kharasch ED (2016) Role of Cytochrome P450 2B6 Polymorphisms in Ketamine metabolism and clearance. Anesthesiology 125:1103–1112CrossRefPubMedGoogle Scholar
  23. 23.
    Kochs E, Adams HA, Spieß C (2008) Intravenöse Hypnotika/Sedativa. In: Anästhesiologie, 2. Aufl., S 70–88Google Scholar
  24. 24.
    Klose R, Hoppe U (2013) Physikochemische Eigenschaften, Pharmakokinetik, Pharmakodynamik. (S)-Ketamin: Aktuelle intersiziplinäre Aspekte, S 3–7Google Scholar
  25. 25.
    Roissant R, Werner C, Zwißler B (2012) Benzodiazepine, Pharmakokinetik. In: Die Anästhesiologie, 3. Aufl., S 203–213CrossRefGoogle Scholar
  26. 26.
    Drugs.com (2017). Midazolam Information from Drugs.com; c1996–2018 Midazolam Hydrochloride. https://www.drugs.com/midazolam.html. Zugegriffen: 22. Aug. 2017
  27. 27.
    Aroni F, Iacovidou N, Dontas I, Pourzitaki C et al (2009) Pharmacological aspects and potential new clinical applications of ketamine: reevaluation of an old drug. J Clin Pharmacol 49(8):957–964CrossRefPubMedGoogle Scholar
  28. 28.
    Heizmann P, Eckert M, Ziegler WH (2012) Pharmacokinetics and bioavailability of midazolam in man. Br J Clin Pharmacol 16(Suppl 1):43–49Google Scholar
  29. 29.
    Morgan DJ, Blackman GL, Paull JD, Wolf LJ (1981) Pharmakokintetics and plasma binding of thiopental. II: studies at cesarean section. Anesthesiology 54(6):474–480CrossRefPubMedGoogle Scholar
  30. 30.
    Vanlersberghe C, Camu F (2008) Etomidate and other non-barbiturates. Handb Exp Pharmacol 182(182):267–282CrossRefGoogle Scholar
  31. 31.
    Vanlersberghe C, Camu F (2008) Propofol. Handb Exp Pharmacol 182(182):227–252CrossRefGoogle Scholar
  32. 32.
    Skues MA, Prys-Roberts C (1989) The pharmacology of Propofol. J Clin Anesth 1(5):387–400CrossRefPubMedGoogle Scholar
  33. 33.
    Shafer SL (1993) Advances in Propofol Pharmakokinetics and Pharmacodynamics. J Clin Anesth 5(Suppl1):14S–20SCrossRefPubMedGoogle Scholar
  34. 34.
    Russo H, Bresolle F (1998) Pharmacodynamics and Pharmacokinetics of Thiopental. Clin Pharmacokinet 35(2):95–134CrossRefPubMedGoogle Scholar
  35. 35.
    Forman SA (2011) Clinical and molecular pharmacology of etomidate. Anesthesiology 114(3):695–707CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rote Liste Service (2015) Fachinformation Etomidate. Rote Liste Service, FrankfurtGoogle Scholar
  37. 37.
    Dewhirst E, Frazier WJ, Leder M, Fraser DD, Tobias JD (2013) Cardiac arrest following ketamine administration for rapid sequence intubation. J Intensive Care Med 28:375–379CrossRefPubMedGoogle Scholar
  38. 38.
    Zielmann S, Kazmaier S, Schüll S, Weyland A (1997) S (+)-Ketamin und Kreislauf. Anästhesist 46(Supplement 1):S43–S46CrossRefGoogle Scholar
  39. 39.
    Schaller B (2003) Ketamin und zerebrovaskuläre Effekte. Anästhesist 52:1178CrossRefGoogle Scholar
  40. 40.
    Engelhardt W (1997) Aufwachverhalten und psychomimetische Reaktionen nach S (+)-Ketamin. Anästhesist 46(Suppl 1):S38–S42CrossRefGoogle Scholar
  41. 41.
    Adams HA (2003) Esketamin im Rettungsdienst – neuer Standard oder exklusive Alternative? Anasthesiol Intensivmed Notfallmed Schmerzther 38(3):192–195.  https://doi.org/10.1055/s-2003-37780 CrossRefPubMedGoogle Scholar
  42. 42.
    Becke K, Landsleitner B, Reinhold P, Schmitz B, Strauß J, Philippi-Höhne C (2010) Diagnostische und interventionelle Eingriffe im Kindesalter. Anästhesiologisches Management. Anaesthesist 59:1013–1020CrossRefPubMedGoogle Scholar
  43. 43.
    Zutter A, Frei FJ (2011) Unkooperatives Kind bei Narkoseeinleitung. Theorie und Praxis. Anästhesist 60:743–750CrossRefGoogle Scholar
  44. 44.
    Girtler R, Gustorff B (2011) Schmerztherapie bei Verbrennungen. Anästhesist 60:243–250CrossRefGoogle Scholar
  45. 45.
    Lang C, Behnke H, Wulf H, Geldner G (2002) Plazentapassage von Anästhetika und Adjuvanzien. Anaesthesist 51:409–417CrossRefPubMedGoogle Scholar
  46. 46.
    Schifilliti D, Grasso G, Conti A, Fodale V (2010) Anaesthetic-related neuroprotection. Intravenous or inahalationanal agents? CNS Drugs 24(11):833–907Google Scholar
  47. 47.
    Chang LC, Raty SR, Ortiz J, Bailard NS, Mathew SJ (2013) Review: the emerging use of Ketamine for anesthesia and sedation in traumatic brain injuries. CNS Neurosci Ther 19:390–395CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pfenninger E, Himmelseher S (1997) Neuroprotektion durch Ketamin auf zellulärer Ebene. Anästhesist 46(Suppl 1):S47–S54CrossRefGoogle Scholar
  49. 49.
    Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135:2390–2398CrossRefPubMedGoogle Scholar
  50. 50.
    Juratli TA, Stephan SE, Stephan AE, Sobottka SB (2015) Akutversorgung des Patienten mit schwerem Schädel-Hirn-Trauma. Anästhesist 64:159–174CrossRefGoogle Scholar
  51. 51.
    Detsch O, Kochs E (1997) Effekte von Ketamin auf die ZNS-Funktion. Anästhesist 46(Suppl 1):S20–S29CrossRefGoogle Scholar
  52. 52.
    Garcia P, Sleigh J (2017) Ketamine: a drug at war with itself. Anesthesiology 126(3):371–372CrossRefPubMedGoogle Scholar
  53. 53.
    Bonhomme V, Vanhaudenhuyse A, Demertzi A, Bruno M‑A, Jaquet O, Bahri MA, Plenevaux A, Boly M, Boveroux P, Soddu A, Brichant JF, Maquet P, Laureys S (2016) Resting-state network-specific breakdown of functional connectivity during Ketamine alteration of consciousness in volunteers. Anesthesiology 125(5):873–888CrossRefPubMedGoogle Scholar
  54. 54.
    Ziemann S, Coburn M (2017) Kommentar zu: Ketamin zur postoperativen Delirprophylaxe und Schmerzreduktion. Anästhesist 66:885–886CrossRefGoogle Scholar
  55. 55.
    Hudetz JA, Patterson KM, Iqbal Z, Ghandi SD, Byrne AJ, Hudetz AG, Warltier DC, Pagel PS (2009) Ketamine attenuates delirium after cardiacsurgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 23(5):651–657CrossRefPubMedGoogle Scholar
  56. 56.
    Avidan MS, Maybrier HR, Abdallah AB, Jacobsohn E, Vlisides PE, Pryor KO, Veselis RA, Grocott HP, Emmert DA, Rogers EM, Doney RJ, Yulico H, Noh GJ, Lee YH, Waszynski CM, Arya VK, Waberski W, Inouye SK, Mashour GA (2017) Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind randomised clinical trial. Lancet 390(10091):267–275CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Forth W, Henschler D, Rummel W, Starke K (1993) Allgemeine und spezielle Pharmakologie und Toxikologie. Wissenschaftsverlag S 115, 250, 256–257, 290–295Google Scholar
  58. 58.
    Gan JT (2006) Pharmacokinetic and Pharmacodynamic characteristics of medications used for moderate sedation. Clin Pharmacokinet 45(9):855–869CrossRefPubMedGoogle Scholar
  59. 59.
    Fassoulaki A, Theodoraki K, Melemeni A (2010) Pharmacology of sedation agents and reversal agents. Digestion 82:80–83CrossRefPubMedGoogle Scholar
  60. 60.
    Brohan J, Goudra BG (2017) The role of GABA receptor agonists in anesthesia and sedation. CNS Drugs 31:845–885CrossRefPubMedGoogle Scholar
  61. 61.
    Rote Liste Service (2014) Fachinformation Midazolam. Rote Liste Service GmbH, FrankfurtGoogle Scholar
  62. 62.
    Gemperle M, Kapp W (1983) Midazolam and anesthesia. Br J Clin Pharmacol 16:187–190CrossRefGoogle Scholar
  63. 63.
    Schwagmeier R, Alincic S, Striebel HW (1998) Midazolam pharmacokinetics following intravenous and buccal administration. Br J Clin Pharmacol 46(3):203–206CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Allonen H, Ziegler G, Klotz U (1981) Midazolam kinetics. Clin Pharmacol Ther 30:653–661CrossRefPubMedGoogle Scholar
  65. 65.
    Lauven PM, Stoeckel H, Ochs H, Greenblatt DJ (1981) Pharmakokinetische Untersuchungen mit dem neuen wasserlöslichen Benzodiazepin Midazolam. Anaesthesist 30:280–283PubMedGoogle Scholar
  66. 66.
    Klotz U, Ziegler G (1982) Physiologic and temporal variation in hepatic elimination of midazolam. Clin Pharmacol Ther 32:107–112CrossRefPubMedGoogle Scholar
  67. 67.
    Smith MT, Eadie MJ, O’Rourke Brophy T (1981) The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 19:271–278CrossRefPubMedGoogle Scholar
  68. 68.
    Duggan M, Dowd N, O’Mara D, Harmon D, Torney W, Cunningham AJ (2002) Benzodiazepine premedication may attenuate the stress response in daycase anesthesia: a pilot study. Can J Anaesth 49:932–935CrossRefPubMedGoogle Scholar
  69. 69.
    Garzone PD, Kroboth PD (1989) Phramacokinetics of the newer bezodiazepines. Clin Pharmacokinet 16:337–364CrossRefPubMedGoogle Scholar
  70. 70.
    Dummond GB (1996) Comparison of sedation with midazolam and ketamine: effects on airway muscle activity. Br J Anaesthesiol 76:663–667CrossRefGoogle Scholar
  71. 71.
    Walther A, Bardenheuer HJ (2001) Sleep apnea syndromes. Anaesthesist 50:295–308CrossRefPubMedGoogle Scholar
  72. 72.
    Connolly LA (1991) Anesthetic management of obtructive sleep apnea patients. J Clin Anesth 3(6):461–469CrossRefPubMedGoogle Scholar
  73. 73.
    Broscheit J, Kranke P (2008) Prämedikation – Charakteristika und Auswahl der Substanzen. Anasthesiol Intensivmed Notfallmed Schmerzther 2:143–142Google Scholar
  74. 74.
    Hofmann W (2013) Benzodiazepine in der Geriatrie. Z Gerontol Geriatr 46(8):769–776CrossRefPubMedGoogle Scholar
  75. 75.
    Cumming RG (1998) Epidemiology of medication related falls and and fractures in the elderly. Drugs Aging 12:43–53CrossRefPubMedGoogle Scholar
  76. 76.
    Ray WA, Griffin MR, Downey W (1989) Benzodiazepines of long and short elimination half life and the risk of hip fracture. JAMA 262:3303–3307CrossRefPubMedGoogle Scholar
  77. 77.
    Wang Peng et al (2017) Delirium risk of dexmedetomidine and midazolam in patients treated with postoperative mechanical ventilation: a meta-analysis. Open Med 12:252–256Google Scholar
  78. 78.
    Burry LD et al (2017) Delirium and exposure to psychoactive medications in critically ill adults: a multi-centre observational study. J Crit Care 42:268–274CrossRefPubMedGoogle Scholar
  79. 79.
    Machotta A, Schneider G (2013) Prämedikation mit Midazolam – Unerlässlich und gut? Anaesthesist 62:225–229CrossRefPubMedGoogle Scholar
  80. 80.
    Cox RG, Nemish U, Ewen A et al (2006) Evidence-based clinical update: does premedication with oral midazolam lead to improved behavioural outcomes in children? Can J Anaesth 53:1213–1219CrossRefPubMedGoogle Scholar
  81. 81.
    Kissin I, Vinik HR, Bradley ER Jr. (1991) Midazolam potentiates thiopental sodium anesthetic induction in patients. J Clin Anesth 3(5):367–370CrossRefPubMedGoogle Scholar
  82. 82.
    Konrad FM, Kramer KM, Schroeder TH, Stubbig K (2011) Anästhesie bei bariatirischer Chirurgie. Anästhesist 60:607–616CrossRefGoogle Scholar
  83. 83.
    Subramani Y, Riad W, Chung F, Wong J (2017) Optimal propofol induction dose in morbidly obese patients: a randomized controlled trial comparing the bispectral index and lean body weight scalar. Can J Anaesth 64:471–479CrossRefPubMedGoogle Scholar
  84. 84.
    Ingrande J, Lemmens HJM (2010) Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 105(i16):1–i23Google Scholar
  85. 85.
    Tonner PH, Hein L (2011) Pharmakotherapie in der Anästhesie und Intensivmedizin. Springer, Berlin, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinKlinikum AugsburgAugsburgDeutschland

Personalised recommendations