Advertisement

Der Anaesthesist

, Volume 67, Issue 7, pp 525–528 | Cite as

Systemische Effekte der Amid-Lokalanästhetika

Alte Substanzen, neue Wunderwaffen?
  • T. Piegeler
  • R. Werdehausen
Regionalanästhesie
  • 1.7k Downloads

Zusammenfassung

Neben den bekannten analgetischen Wirkungen der Amidlokalanästhetika durch Blockade des spannungsabhängigen Natriumkanals besitzen diese Substanzen eine Vielzahl weiterer positiver Eigenschaften, die das Ergebnis einer Operation positiv beeinflussen könnten. Experimentelle und auch klinische Studien suggerieren die Möglichkeit einer verbesserten postoperativen Erholung, einer Verminderung der Inzidenz von chronischen Schmerzen, einer Bewahrung der endothelialen Barriere im akuten Lungenschaden oder der Verhinderung einer möglichen Metastasierung maligner Zellen durch systemische Effekte von Lokalanästhetika. Mechanistische Untersuchungen konnten zudem bereits „neue Ziele“, wie beispielsweise die Hemmung spinaler Glycintransporter oder einer durch Tumornekrosefaktor α induzierten inflammatorischen Signalkaskade, identifizieren. Die Aufklärung weiterer möglicher Mechanismen dieser Effekte ist ebenso Bestandteil aktiver anästhesiologischer Forschung wie auch die Translation der bisher vielversprechenden Ansätze aus dem Labor hinein in die klinische Anwendung.

Schlüsselwörter

Lokalanästhetika Schmerz Behandlungsergebnis Entzündung Tumoren 

Systemic effects of amide-linked local anesthetics

Old drugs, new magic bullets?

Abstract

Besides the well-known analgesic effects of amide-linked local anesthetics exerted via the inhibition of the voltage-gated sodium channel, these substances also possess a certain number of properties, which bear the potential to positively influence the outcome after surgery. The results of several experimental as well as clinical studies suggest the possibility of an enhanced recovery after surgery, reduction in the incidence of chronic pain, preservation of endothelial barrier function during acute lung injury and the prevention of metastasis of solid tumors by systemic effects of local anesthetic administration. Mechanistic studies were able to identify several “new targets”, such as the inhibition of spinal glycine transporters or of inflammatory signaling as induced by tumor necrosis factor alpha. Further elucidation of these mechanistic pathways as well as the translation of these promising experimental results into clinical practice is a crucial component of research activities in the field of anesthesia.

Keywords

Anesthetics, local Pain Treatment outcome Inflammation Neoplasms 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Piegeler und R. Werdehausen geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Baptista-Hon DT, Robertson FM, Robertson GB et al (2014) Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function. Br J Anaesth 113(Suppl 1):i39CrossRefPubMedGoogle Scholar
  2. 2.
    Betz H, Gomeza J, Armsen W et al (2006) Glycine transporters: essential regulators of synaptic transmission. Biochem Soc Trans 34:55–58CrossRefPubMedGoogle Scholar
  3. 3.
    Biki B, Mascha E, Moriarty DC et al (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 109:180–187CrossRefPubMedGoogle Scholar
  4. 4.
    Cakmakkaya OS, Kolodzie K, Apfel CC et al (2014) Anaesthetic techniques for risk of malignant tumour recurrence. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd008877.pub2 PubMedCrossRefGoogle Scholar
  5. 5.
    Chamaraux-Tran TN, Mathelin C, Aprahamian M et al (2018) Antitumor effects of Lidocaine on human breast cancer cells: an in vitro and in vivo experimental trial. Anticancer Res 38:95–105PubMedGoogle Scholar
  6. 6.
    Chuan A, Harrop-Griffiths W (2017) The History of Local Anesthesia. In: Hadzic A (Hrsg) Hadzic’s Textbook of Regional Anesthesia and Acute Pain Management, 2nd Edition, McGraw Hill, New York, S 3–20Google Scholar
  7. 7.
    Van Der Wal S, Vaneker M, Steegers M et al (2015) Lidocaine increases the anti-inflammatory cytokine IL-10 following mechanical ventilation in healthy mice. Acta Anaesthesiol Scand 59:47–55CrossRefPubMedGoogle Scholar
  8. 8.
    Van Der Wal SE, Van Den Heuvel SA, Radema SA et al (2016) The in vitro mechanisms and in vivo efficacy of intravenous lidocaine on the neuroinflammatory response in acute and chronic pain. Eur J Pain 20:655–674CrossRefGoogle Scholar
  9. 9.
    Deschner B, Robards C, Lakshmanasamy S et al (2007) The history of local anesthesia. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Dewinter GB, Teunkens A, Vermeulen K et al (2016) Systemic Lidocaine fails to improve postoperative pain, but reduces time to discharge readiness in patients undergoing laparoscopic sterilization in day-case surgery: a double-blind, randomized, placebo-controlled trial. Reg Anesth Pain Med 41:362–367CrossRefPubMedGoogle Scholar
  11. 11.
    Dohi T, Morita K, Kitayama T et al (2009) Glycine transporter inhibitors as a novel drug discovery strategy for neuropathic pain. Pharmacol Ther 123:54–79CrossRefPubMedGoogle Scholar
  12. 12.
    Exadaktylos AK, Buggy DJ, Moriarty DC et al (2006) Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 105:660–664CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garcia-Roman J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335:259–269CrossRefPubMedGoogle Scholar
  14. 14.
    Herroeder S, Pecher S, Schonherr ME et al (2007) Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann Surg 246:192–200CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hu G, Minshall RD (2009) Regulation of transendothelial permeability by Src kinase. Microvasc Res 77:21–25CrossRefPubMedGoogle Scholar
  16. 16.
    Hu G, Malik AB, Minshall RD (2010) Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation. Crit Care Med 38:194–201CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Javaid K, Rahman A, Anwar KN et al (2003) Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res 92:1089–1097CrossRefPubMedGoogle Scholar
  18. 18.
    Kim MH, Lee KY, Park S et al (2017) Effects of systemic lidocaine versus magnesium administration on postoperative functional recovery and chronic pain in patients undergoing breast cancer surgery: a prospective, randomized, double-blind, comparative clinical trial. PLoS ONE 12:e173026CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Klinger RY, Cooter M, Berger M et al (2016) Effect of intravenous lidocaine on the transcerebral inflammatory response during cardiac surgery: a randomized-controlled trial. Can J Anaesth 63:1223–1232CrossRefPubMedGoogle Scholar
  21. 21.
    Kranke P, Jokinen J, Pace NL et al (2015) Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd009642.pub2 CrossRefPubMedGoogle Scholar
  22. 22.
    Lin L, Liu C, Tan H et al (2011) Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: a retrospective analysis. Br J Anaesth 106:814–822CrossRefPubMedGoogle Scholar
  23. 23.
    Lirk P, Hollmann MW, Fleischer M et al (2014) Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth 113(Suppl 1):i32–i38CrossRefPubMedGoogle Scholar
  24. 24.
    Liu G, Vogel SM, Gao X et al (2011) Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol 31:1342–1350CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lurje G, Schiesser M, Claudius A et al (2010) Circulating tumor cells in gastrointestinal malignancies: current techniques and clinical implications. J Oncol 2010:392652CrossRefPubMedGoogle Scholar
  26. 26.
    Martin C, Boisson C, Haccoun M et al (1997) Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med 25:1813–1819CrossRefPubMedGoogle Scholar
  27. 27.
    De Oliveira GS Jr., Ahmad S, Schink JC et al (2011) Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Reg Anesth Pain Med 36:271–277CrossRefPubMedGoogle Scholar
  28. 28.
    De Oliveira GS Jr., Fitzgerald P, Streicher LF et al (2012) Systemic lidocaine to improve postoperative quality of recovery after ambulatory laparoscopic surgery. Anesth Analg 115:262–267CrossRefPubMedGoogle Scholar
  29. 29.
    Picardi S, Cartellieri S, Groves D et al (2013) Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge. Reg Anesth Pain Med 38:9–15CrossRefPubMedGoogle Scholar
  30. 30.
    Piegeler T, Votta-Velis EG, Liu G et al (2012) Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 117:548–559CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Piegeler T, Dull RO, Hu G et al (2014) Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. BMC Anesthesiol 14:57CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Piegeler T, Votta-Velis EG, Bakhshi FR et al (2014) Endothelial barrier protection by local anesthetics: Ropivacaine and Lidocaine block tumor necrosis factor-alpha-induced endothelial cell Src activation. Anesthesiology 120:1414–1428CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Piegeler T, Schlapfer M, Dull RO et al (2015) Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFalpha-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br J Anaesth 115:784–791CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Piegeler T, Hollmann MW, Borgeat A et al (2016) Do amide local anesthetics play a therapeutic role in the perioperative management of cancer patients? Int Anesthesiol Clin 54:e17–e32CrossRefPubMedGoogle Scholar
  35. 35.
    Roumen RM, Hendriks T, Van Der Ven-Jongekrijg J et al (1993) Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg 218:769–776CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Seybold J, Thomas D, Witzenrath M et al (2005) Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 105:3569–3576CrossRefPubMedGoogle Scholar
  37. 37.
    Staudt LM (2010) Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2:a109CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Strichartz G (1976) Molecular mechanisms of nerve block by local anesthetics. Anesthesiology 45:421–441CrossRefPubMedGoogle Scholar
  39. 39.
    Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Werdehausen R, Kremer D, Brandenburger T et al (2012) Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology 116:147–158CrossRefPubMedGoogle Scholar
  41. 41.
    Werdehausen R, Mittnacht S, Bee LA et al (2015) The lidocaine metabolite N‑ethylglycine has antinociceptive effects in experimental inflammatory and neuropathic pain. Pain 156:1647–1659CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yardeni IZ, Beilin B, Mayburd E et al (2009) The effect of perioperative intravenous lidocaine on postoperative pain and immune function. Anesth Analg 109:1464–1469CrossRefPubMedGoogle Scholar
  43. 43.
    Zeilhofer HU, Benke D, Yevenes GE (2012) Chronic pain states: pharmacological strategies to restore diminished inhibitory spinal pain control. Annu Rev Pharmacol Toxicol 52:111–133CrossRefPubMedGoogle Scholar
  44. 44.
    Zugazagoitia J, Guedes C, Ponce S et al (2016) Current challenges in cancer treatment. Clin Ther 38:1551–1566CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Anästhesiologie und IntensivtherapieUniversitätsklinikum Leipzig (AöR)LeipzigDeutschland

Personalised recommendations