Advertisement

Der Anaesthesist

, Volume 67, Issue 6, pp 426–447 | Cite as

Risks and prevention of surgical fires

A systematic review
  • I. Kezze
  • N. Zoremba
  • R. Rossaint
  • A. Rieg
  • M. Coburn
  • G. SchälteEmail author
Originalien

Abstract

Surgically induced fire is a life-threatening hazard; this topic has received little attention, although only 3 factors, the so-called fire triad, are needed for surgical fires to occur: an oxidizer, fuel and an ignition source. This systematic review aims to determine the impact of each component and to delegate every staff member an area of responsibility, thus ensuring patient health through prevention or protection. The trial was registered in Prospero CRD42018082656. A database search of eligible, preferably evidence-based studies was conducted. The Robins-I tool for assessing the risk of bias revealed a moderate risk of bias. Due to insufficient data, the main findings of these studies could not be summarized through a quantitative synthesis; therefore, a qualitative synthesis is outlined. The results are summarized according to the roles of the fire triad and discussed. (1) Role of the oxidizer: oxygen is the key component of the triad. Safe oxygen delivery is important. An oxygen-enriched environment (ORE) is caused by draping and is preferably prevented by suctioning. Fuel characteristics are affected by varying oxygen concentrations. (2) Role of the ignition source: electrocauterization is the most common ignition source, followed by lasers. Less common ignition sources include fiberoptic cables and preparative solutions, petrol or acetone. (3) Role of the fuel: surgical drapes are one of the most common fuels for surgical fires followed by the patient’s hair and skin. Skin preparation solutions are among the less common fuels. Many fire-resistant materials have been tested that do not remain fire resistant in ORE. It was concluded that the main problem is defining the real extent of this hazard. Exact numbers and exact condition protocols are needed; therefore, standardized registration of every fire and future studies with much evidence are needed. Immediate prevention consists of close attention to patient safety to prevent surgical fires from happening.

Keywords

Fire Operation Ignition source Oxygen Prevention 

Risiken und Prävention chirurgisch induzierter Feuer

Eine systematische Übersicht

Zusammenfassung

Chirurgisch induzierte Feuer im Operationssaal sind eine für den Patienten in der Regel lebensbedrohliche Komplikation, die in der subjektiven Wahrnehmung aller an einer Operation beteiligten Personen eher vernachlässigt und nicht als aktives Risiko wahrgenommen wird. Dabei bedarf es zur Entstehung eines Feuers nur 3 paralleler Faktoren: Oxidans, Brennstoff und Zündquelle, zusammengefasst als die Feuertriade. Ziel dieser systematischen Übersichtsarbeit sind die Analyse und Bewertung jeder einzelnen Komponente des Verbrennungsdreiecks und deren Einordnung in den Berufsgruppen spezifischen Kontext, mit einer Festschreibung von Verantwortlichkeiten und dem gemeinsamen Ziel der Prävention. Die Studie wurde in Prospero (CRD42018082656) registriert. Dazu wurden verschiedene Datenbanken systematisch nach möglichst hoher Evidenz durchsucht sowie die „Treffer“ analysiert und bewertet. Das Risiko einer Verzerrung wurde mit „moderat“ (Robins-I-Modell) bewertet. Bedingt durch eine unzureichende Datenqualität (keine prospektiven randomisierten Studien, Tiermodelle, Kohorten und Fallberichte/-serien) verbot sich eine quantitative Synthese der Daten. Aus diesem Grund werden die Ergebnisse qualitative-deskriptiv sowie in zusammenfassenden Tabellen und Diagrammen dargestellt. Die Ergebnisse wurden in Analogie zu ihrer Rolle in einem Verbrennungsdreieck wie folgt zusammengefasst und bewertet. (1) Oxidationsmittel: Sauerstoff ist die Schlüsselkomponente im Verbrennungsdreieck. Die Applikation von Sauerstoff bedarf hoher Sicherheitsstandards. Die Entstehung einer sauerstoffangereicherten Umgebung, verursacht beispielsweise durch Abdecktücher, kann durch die präventive Installation einer adäquaten Absaugvorrichtung verhindert werden. Die Charakteristika potenzieller Brennstoffe sind abhängig von der lokalen Sauerstoffkonzentration. (2) Zündquelle: Die Elektrokoagulation stellt, gefolgt von Lasern, die häufigste Zündquelle dar. Seltener ist der Zündvorgang durch fiberoptische Leitungen oder die Selbstentzündung von Desinfektionsmitteln und Benzin oder Aceton getriggert. (3) Brennstoffe: Abdecktücher aller Art sind der „Haupttreibstoff“ chirurgischer Feuer, gefolgt von Körperbehaarung und Haut der Patienten. Seltenere Brennstoffe sind Hautdesinfektionsmittel und Reinigungssubstanzen. Viele, vermeintlich „feuersichere“ oder „schwer entzündliche“, neue Abdeckmaterialien brennen in mit Sauerstoff angereicherter Umgebung trotzdem und entgegen der Vorgaben als Brennstoffquelle. Als Hauptschwierigkeit stellt sich die Bewertung des tatsächlichen Umfangs der Bedrohung durch chirurgische Feuer und eines potenziellen Schadens dar. Es mangelt an dringend notwendigen Informationen; genauen Zahlen, einer systematischen Erfassung aller Feuer im Operationssaal und einer exakten Definition der auslösenden Variablen und Konditionen. Die Erweiterung etablierter Safe-surgery-Protokolle um die Komponente „Determinanten zur Entstehung chirurgischer Feuer“ kann ein erster präventiver Schritt zu deren Verhinderung sein.

Schlüsselwörter

Feuer Operation Zündquelle Sauerstoff Vorbeugung 

Notes

Compliance with ethical guidelines

Conflict of interest

I. Kezze, N. Zoremba, R. Rossaint, A. Rieg, M. Coburn and G. Schälte declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Hempel S et al (2015) Wrong-site surgery, retained surgical items, and surgical fires: a systematic review of surgical never events. JAMA Surg 150(8):796–805CrossRefPubMedGoogle Scholar
  2. 2.
    Eichhorn JH, Eisenkraft JB (2013) Expired oxygen as the unappreciated issue in preventing airway fires: getting to “never”. Anesth Analg.  https://doi.org/10.1213/ANE.0b013e3182a6d34d PubMedCrossRefGoogle Scholar
  3. 3.
    Fires R (2008) Practice advisory for the prevention and management of operating room fires. Anesthesiology 108(5):786–801CrossRefGoogle Scholar
  4. 4.
    Watson DS (2009) Surgical fires: 100% preventable, still a problem. AORN J 90(4):589–593CrossRefPubMedGoogle Scholar
  5. 5.
    Smith TL, Smith JM (2001) Electrosurgery in otolaryngology—head and neck surgery: principles, advances, and complications. Laryngoscope 111(5):769–780CrossRefPubMedGoogle Scholar
  6. 6.
    Mehta SP et al (2013) Operating room fires. A closed claims analysis. J Am Dent Soc Anesthesiol 118(5):1133–1139Google Scholar
  7. 7.
    Reyes RJ et al (1995) Supplemental oxygen: ensuring its safe delivery during facial surgery. Plast Reconstr Surg 95(5):924–928CrossRefPubMedGoogle Scholar
  8. 8.
    Huddleston S et al (2013) Fire risk during ophthalmic plastic surgery. Ophthalmology 120(6):1309–1309CrossRefPubMedGoogle Scholar
  9. 9.
    Orhan-Sungur M et al (2009) Effect of nasal cannula oxygen administration on oxygen concentration at facial and adjacent landmarks. Anaesthesia 64(5):521–526CrossRefPubMedGoogle Scholar
  10. 10.
    Meneghetti SC et al (2007) Operating room fires: optimizing safety. Plast Reconstr Surg 120(6):1701–1708CrossRefPubMedGoogle Scholar
  11. 11.
    Greco RJ et al (1995) Potential dangers of oxygen supplementation during facial surgery. Plast Reconstr Surg 95(6):978–984CrossRefPubMedGoogle Scholar
  12. 12.
    Barnes AM, Frantz R (2000) Do oxygen-enriched atmospheres exist beneath surgical drapes and contribute to fire hazard potential in the operating room? AANA J 68(2):153–162PubMedGoogle Scholar
  13. 13.
    VanCleave AM et al (2014) The effect of intraoral suction on oxygen-enriched surgical environments: a mechanism for reducing the risk of surgical fires. Anesth Prog 61(4):155–161CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tao JP et al (2013) The efficacy of a midfacial seal drape in reducing oculofacial surgical field fire risk. Ophthal Plast Reconstr Surg 29(2):109–112CrossRefPubMedGoogle Scholar
  15. 15.
    Wolf GL et al (2004) Laser ignition of surgical drape materials in air, 50% oxygen, and 95% oxygen. Anesthesiology 100(5):1167–1171CrossRefPubMedGoogle Scholar
  16. 16.
    Culp WC, Kimbrough BA, Luna S (2013) Flammability of surgical drapes and materials in varying concentrations of oxygen. Anesthesiology 119(4):770–776CrossRefPubMedGoogle Scholar
  17. 17.
    Roy S, Smith LP (2015) Prevention of airway fires: testing the safety of endotracheal tubes and surgical devices in a mechanical model. Am J Otolaryngol 36(1):63–66CrossRefPubMedGoogle Scholar
  18. 18.
    Roy S, Smith LP (2011) What does it take to start an oropharyngeal fire? Oxygen requirements to start fires in the operating room. Int J Pediatr Otorhinolaryngol 75(2):227–230CrossRefPubMedGoogle Scholar
  19. 19.
    Choudhry AJ et al (2017) Surgical fires and operative burns: lessons learned from a 33-year review of medical litigation. Am J Surg 213(3):558–564CrossRefPubMedGoogle Scholar
  20. 20.
    Smith LP, Roy S (2008) Fire/burn risk with electrosurgical devices and endoscopy fiberoptic cables. Am J Otolaryngol 29(3):171–176CrossRefPubMedGoogle Scholar
  21. 21.
    Eggen MA, Brock-Utne JG (1994) Fiberoptic illumination systems can serve as a source of smoldering fires. J Clin Monit 10(4):244–246CrossRefPubMedGoogle Scholar
  22. 22.
    Williams D et al (2006) Fiberoptic light source-induced surgical fires—the contribution of forced-air warming blankets. Acta Anaesthesiol Scand 50(4):505–508CrossRefPubMedGoogle Scholar
  23. 23.
    Smith LP, Roy S (2011) Operating room fires in otolaryngology: risk factors and prevention. Am J Otolaryngol 32(2):109–114CrossRefPubMedGoogle Scholar
  24. 24.
    Rocos B, Donaldson L (2012) Alcohol skin preparation causes surgical fires. Ann R Coll Surg Engl 94(2):87–89CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zlochower IA, Green GM (2009) The limiting oxygen concentration and flammability limits of gases and gas mixtures. J Loss Prev Process Ind 22(4):499–505CrossRefGoogle Scholar
  26. 26.
    McManus N (1998) Safety and health in confined spaces. CRC, Boca RatonGoogle Scholar
  27. 27.
    Guglielmi CL et al (2014) Empowering providers to eliminate surgical fires. AORN J 100(4):412–428CrossRefPubMedGoogle Scholar
  28. 28.
    Zeeck SC (2017) Chemie für Mediziner. Elsevier Health Sciences, MünchenGoogle Scholar
  29. 29.
    Jones DB et al (2015) Safe energy use in the operating room. Curr Probl Surg 52(11):447–468CrossRefPubMedGoogle Scholar
  30. 30.
  31. 31.
    Culp WC Jr et al (2014) Operating room fire prevention: creating an electrosurgical unit fire safety device. Ann Surg 260(2):214–217CrossRefPubMedGoogle Scholar
  32. 32.
    Kiyoyama T et al (2009) Isopropyl alcohol compared with isopropyl alcohol plus povidone-iodine as skin preparation for prevention of blood culture contamination. J Clin Microbiol 47(1):54–58CrossRefPubMedGoogle Scholar
  33. 33.
    Memorial Medical Center, I (2011) Fire risk assessment tool. http://surgicalfireorg.fatcow.com/wp-content/uploads/2012/10/RiskAssessmentTool.pdf. Accessed December 3, 2017Google Scholar
  34. 34.
    Stouffer D (1992) Fires during surgery: two fatal incidents in Los Angeles. J Burn Care Res 13(1):114–117CrossRefGoogle Scholar
  35. 35.
    Rinder CS (2008) Fire safety in the operating room. Curr Opin Anaesthesiol 21(6):790–795CrossRefPubMedGoogle Scholar
  36. 36.
    Niskanen M et al (2007) Fatal inhalation injury caused by airway fire during tracheostomy. Acta Anaesthesiol Scand 51(4):509–513CrossRefPubMedGoogle Scholar
  37. 37.
    Barker SJ, Polson JS (2001) Fire in the operating room: a case report and laboratory study. Anesth Analg 93(4):960–965CrossRefPubMedGoogle Scholar
  38. 38.
    de Almeida CE et al (2012) Fire in the surgical center. Rev Bras Anestesiol 62(3):432–438CrossRefPubMedGoogle Scholar
  39. 39.
    Bailey MK et al (1990) Electrocautery-induced airway fire during tracheostomy. Anesth Analg 71(6):702–704CrossRefPubMedGoogle Scholar
  40. 40.
    Haith LR Jr et al (2012) Burn center management of operating room fire injuries. J Burn Care Res 33(5):649–653CrossRefPubMedGoogle Scholar
  41. 41.
    Errando CL et al (2005) An infrequent case of fire in the operating room during open surgery of a tracheobronchopleural fistula. J Cardiothorac Vasc Anesth 19(4):556–557CrossRefPubMedGoogle Scholar
  42. 42.
    Kazanjian PE, Doyle AR (2007) Fires in the operating room. In: Complications in anesthesia, 2nd edn. Elsevier, Amsterdam, pp 562–566CrossRefGoogle Scholar
  43. 43.
    Ortega RA (1998) A rare cause of fire in the operating room. Anesthesiology 89(6):1608–1608CrossRefPubMedGoogle Scholar
  44. 44.
    Batra S, Gupta R (2008) Alcohol based surgical prep solution and the risk of fire in the operating room: a case report. Patient Saf Surg 2(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chestler RJ, Lemke BN (1989) Intraoperative flash fires associated with disposable cautery. Ophthal Plast Reconstr Surg 5(3):194–195CrossRefPubMedGoogle Scholar
  46. 46.
    Akhtar N et al (2016) Airway fires during surgery: management and prevention. J Anaesthesiol Clin Pharmacol 32(1):109CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chae S‑B et al (2014) Fires and burns occurring in an electrocautery after skin preparation with alcohol during a neurosurgery. J Korean Neurosurg Soc 55(4):230–233CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim M‑S et al (2014) Electrocautery-ignited surgical field fire caused by a high oxygen level during tracheostomy. Korean J Thorac Cardiovasc Surg 47(5):491CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Plumlee JE (1973) Operating-room flash fire from use of cautery after aerosol spray: a case report. Anesth Analg 52(2):202–203CrossRefPubMedGoogle Scholar
  50. 50.
    Singla AK et al (2005) Surgical field fire during a repair of bronchoesophageal fistula. Anesth Analg 100(4):1062–1064CrossRefPubMedGoogle Scholar
  51. 51.
    Dhebri A, Afify S (2002) Free gas in the peritoneal cavity: the final hazard of diathermy. Postgrad Med J 78(922):496–497CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chung S‑H et al (2012) A patient who was burned in the operative field: a case report. Ulus Travma Acil Cerrahi Derg 18(3):274–276CrossRefPubMedGoogle Scholar
  53. 53.
    Katz JA, Campbell L (2005) Fire during thoracotomy: a need to control the inspired oxygen concentration. Anesth Analg 101(2):612CrossRefPubMedGoogle Scholar
  54. 54.
    Prasad R et al (2006) Fires in the operating room and intensive care unit: awareness is the key to prevention. Anesth Analg 102(1):172–174CrossRefPubMedGoogle Scholar
  55. 55.
    Thompson JW et al (1998) Fire in the operating room during tracheostomy. South Med J 91(3):243–247CrossRefPubMedGoogle Scholar
  56. 56.
    Feldman, Ehrenwert et al (2014) Thinking outside the triangle: a new approach to prenting surgical fires. Anest Analg 118(4):704–705CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • I. Kezze
    • 1
  • N. Zoremba
    • 2
  • R. Rossaint
    • 1
  • A. Rieg
    • 1
  • M. Coburn
    • 1
  • G. Schälte
    • 1
    Email author
  1. 1.Department of AnesthesiologyUniversity Hospital RWTH AachenAachenGermany
  2. 2.Department of Anesthesiology, Critical Care and Emergency MedicineSt. Elisabeth Hospital GüterslohGüterslohGermany

Personalised recommendations