Advertisement

Der Anaesthesist

, Volume 67, Issue 7, pp 535–552 | Cite as

Medikamente zur intravenösen Narkoseinduktion: Barbiturate

  • C. Dumps
  • E. Halbeck
  • D. Bolkenius
CME
  • 2.3k Downloads

Zusammenfassung

Die Entdeckung der Barbitursäure und die Erforschung ihrer Derivate waren von herausragender Bedeutung für den Fortschritt der modernen Anästhesie. Der jahrzehntelange klinische Umgang mit Barbituraten weltweit, aber auch deren Missbrauch, hat zu enormem Wissen geführt. Thiopental und Methohexital zählen zu den ultrakurz wirksamen Barbituraten. Mit ihrer Anwendung erweiterten sich die Kenntnisse über die Pharmakologie zerebral aktiver Medikamente; dies betrifft insbesondere den γ‑Aminobuttersäure-A(GABAA)-Rezeptor und die durch GABA induzierten Vorgänge an der Membran der Nervenzelle. Trotz der Entwicklung neuerer Substanzen hat Thiopental einen geschichtlich gewachsenen, festen Platz in der klinischen Anwendung. Derzeit dient es v. a. noch in der Geburtshilfe als Induktionshypnotikum bei Kaiserschnitt in Allgemeinanästhesie. Nachteilig ist bei ordnungsgemäßem Gebrauch zur Narkoseinduktion zumeist nur die verlängerte Eliminationskinetik der Barbiturate. Positiv ist, dass Barbiturate keine nebenwirkungsreichen Lösungsvermittler benötigen.

Schlüsselwörter

Thiopental Methohexital Pharmakokinetik Pharmakodynamik Kaiserschnitt 

Drugs for intravenous induction of anesthesia: barbiturates

Abstract

The discovery of barbituric acid and research on its derivatives have long been of importance in advancements in modern anesthesia. Decades of clinical use of barbiturates worldwide and their abuse has led to an enormous amount of knowledge. Thiopental and methohexital are ultra-short acting derivatives of barbiturates. Their clinical application has been accompanied by an enormous increase in the knowledge of the pharmacology of cerebrally active drugs, in particular gamma-aminobutyric acid (GABAA) receptor and GABA-induced effects on nerve cell membranes. Despite the development of newer substances, thiopental still has a firm place in clinical applications. Currently it is mainly used in obstetrics for induction of cesarean sections under general anesthesia. A disadvantage, when properly used to induce anesthesia, is usually only the prolonged elimination kinetics of barbiturates. It is beneficial that barbiturates do not require side effect provoking solubilizers.

Keywords

Thiopental Methohexital Pharmacokinetics Pharmacodynamics Cesarean section 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Dumps, E. Halbeck und D. Bolkenius geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

Verwendete Literatur

  1. 1.
    Baeyer A (1864) Untersuchungen über die Harnsäuregruppe. Justus Liebigs Ann Chem 131(3):291–302CrossRefGoogle Scholar
  2. 2.
    Lopez-Munoz F, Ucha-Udabe R, Alamo C (2005) The history of barbiturates a century after their clinical introduction. Neuropsychiatr Dis Treat 1(4):329–343PubMedPubMedCentralGoogle Scholar
  3. 3.
    Stanski DR, Burch PG, Harapat SH, Richards RK (1983) Pharmacokinetics and anesthetic potency of a thiopental isomer. J Pharm Sci 72(8):937–940CrossRefPubMedGoogle Scholar
  4. 4.
    Dundee JW, McIlroy PDA (1982) The history of the barbiturates. Anaesthesia 37:726–734CrossRefPubMedGoogle Scholar
  5. 5.
    Lehman HE, Ban TA (1970) Pharmacotherapy of tension and anxiety. Charles C. Thomas, SpringfieldGoogle Scholar
  6. 6.
    Hempel V et al (1994) 60 Jahre Thiopental. Anasthesiol Intensivmed Notfallmed Schmerzther 29:400–407CrossRefPubMedGoogle Scholar
  7. 7.
    Wise CC, Robinson JS, Heath MJ, Tomlin PJ (1969) Physiological responses to intermittent methohexitone for conservative dentistry. Br Med J 2(5656):540–543CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martone CH, Nagelhout J, Wolf SM (1991) Methohexital: a practical review for outpatient dental anesthesia. Anesth Prog 38:195–199PubMedPubMedCentralGoogle Scholar
  9. 9.
    MacPherson RD (2015) Which anesthetic agents for ambulatory electro-convulsive therapy? Curr Opin Anaesthesiol 6(28):656–661Google Scholar
  10. 10.
    Laishley RS, O’Callaghan AC, Lerman J (1986) Effects of dose and concentration of rectal methohexitone for induction of anaesthesia in children. Can Anaesth Soc J 33(4):427–432CrossRefPubMedGoogle Scholar
  11. 11.
    Sedik H (2001) Use of intravenous methohexital as a sedative in pediatric emergency departments. Arch Pediatr Adolesc Med 155:665–668CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts I, Sydenham E (2012) Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD000033.pub2 CrossRefPubMedGoogle Scholar
  13. 13.
    Hilbert P, Kern B‑C, Langer S, Jakubetz J, Stuttmann R (2011) Methohexital zur Therapie des erhöhten intrakraniellen Drucks. Anästhesist 60:819–826CrossRefGoogle Scholar
  14. 14.
    Volz D, Vogt A, Schütz M, Hopf H‑B (2014) Methohexital zur Analgosedierung bei beatmeten Intensivpatienten. Anästhesist 63:488–495CrossRefGoogle Scholar
  15. 15.
    Forman SA, Miller KW (2016) Mapping general anesthetic sites in heteromeric gamma aminobutyric acid type A receptors reveals a potential for targeting receptor subtypes. Anesth Analg 123(5):1263–1273CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Drexler B, Grasshoff C, Rudolph U, Unertl K, Antkowiak B (2006) Die GABAA-Rezeptor-Familie. Möglichkeiten für die Entwicklung besserer Anästhetika. Anaesthesist 55:287–295CrossRefPubMedGoogle Scholar
  17. 17.
    Löscher W, Rogawski MA (2012) Phenobarbital: the centenary – how theories evolved concerning the mechanism of actions of barbiturates. Epilepsia 53(Supplement 8):12–25CrossRefPubMedGoogle Scholar
  18. 18.
    Fassoulaki A, Sarantopoulos C, Papilas K (1993) Flumazenil reduces the duration of thiopentone but not propofol anaeshesia in humans. Can J Anaesth 40:10–12CrossRefPubMedGoogle Scholar
  19. 19.
    Russo H, Bresolle F (1998) Parmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet 35(2):95–134CrossRefPubMedGoogle Scholar
  20. 20.
    Haws JL, Herman N, Clark Y, Bjoraker R, Jones D (1998) The chemical stability and sterility of sodium thiopental after preparation. Anesth Analg 86:208–2013PubMedGoogle Scholar
  21. 21.
    Roissant R, Werner C, Zwißler B (2008) Ketamin, Pharmakokinetik, 2. Aufl. Die Anästhesiologie, S 209–212 (Kapitel 13.1)Google Scholar
  22. 22.
    Brevital Sodium Methohexital sodium for injection, USP FDA. Prescribing Information as of July 2007. Distributed for: Monarch Pharmaceuticals, Inc., Bristol, TN 37620Google Scholar
  23. 23.
    Becker KE Jr (1976) Gas chromatographic assay for free and total plasma levels of thiopental. Anesthesiology 45(6):656–660CrossRefPubMedGoogle Scholar
  24. 24.
    Christensen JH, Andreasen F, Jensen EB (1980) The binding of thiopental to serum proteins determined by ultrafiltration and equlibrium dialysis. Acta Pharmacol Toxicol (Copenh) 47:24–32CrossRefGoogle Scholar
  25. 25.
    Brodie BB, Mark LC, Lief PA et al (1951) Acute tolerance to thiopental. J Pharmacol Exp Ther 102:215–218PubMedGoogle Scholar
  26. 26.
    Dundee JW, Price HL, Dripps RD (1956) Acute tolerance of thiopentone in man. Br J Anaesthesiol 28:344–352CrossRefGoogle Scholar
  27. 27.
    Toner W, Howard PJ, McGowan WAW et al (1980) Another look at acute tolerance to thiopentone. Br J Anaesthesiol 52:1005–1008CrossRefGoogle Scholar
  28. 28.
    Andersen LW, Qvist T, Hertz J, Moogensen F (1987) Concentrations of thiopentone in mature breast milk and colostrum following an induction dose. Acta Anaesthesiol Scand 31:30–32CrossRefPubMedGoogle Scholar
  29. 29.
    Nassen CA, Schaefer C, Wirbelbauer J, Hönig A, Kranke P (2014) Anästhesie und Analgesie in der Stillperiode – Kriterien der Medikamentenauswahl. Anästhesist 63:415–421CrossRefGoogle Scholar
  30. 30.
    Sultan P, Campbell J (2008) Is there a role for thiopentone in modern anaesthetic practice? Br J Hosp Med 69(9):541.  https://doi.org/10.12968/hmed.2008.69.9.31058 CrossRefGoogle Scholar
  31. 31.
    Lange H, Stephan H, Zielmann S, Brandt C, Sonntag H (1992) Hepatische Elimination von Thiopental bei koronarchirurgischen Patienten. Anaesthesist 41:171–178PubMedGoogle Scholar
  32. 32.
    Pandeleet G, Chaux F, Salvadori C, Farinotti M, Duvaldestin P (1983) Thiopental pharmacokinetics in patients with cirrhosis. Anesthesiology 59:123–126CrossRefGoogle Scholar
  33. 33.
    Avram MJ, Shangvi R, Henthorn TK et al (1993) Determinants of thiopental induction dose requirements. Anesth Analg 76:10–17CrossRefPubMedGoogle Scholar
  34. 34.
    Priebe HJ (2013) Ileuseinleitung – was tun, was lassen? Aktuelles Wissen für Anästhesisten: Refresher Course Nr. 39 Deutsche Akademie für Anästhesiologische Fortbildung. Aktiv Druck & Verlag GmbH, EbelsbachGoogle Scholar
  35. 35.
    Ingrande J, Lemmens HJM (2010) Dose adjustement of anaesthetics in the morbidly obese. Br J Anaesth 105(Suppl 1):i16–i23.  https://doi.org/10.1093/bja/aeq312+ CrossRefPubMedGoogle Scholar
  36. 36.
    Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065CrossRefPubMedGoogle Scholar
  37. 37.
    Hikma Pharma (2005) Fachinformation Brevimytal HikmaGoogle Scholar
  38. 38.
    Forbes RB, Murray DJ, Dull DL, Mahoney LT (1989) Haemodynamic effects of rectal methohexitone for induction of anaesthesia in children. Can J Anaesth 36(5):526–529CrossRefPubMedGoogle Scholar
  39. 39.
    Herman NL, Li Tama A‑T, van Decar K, Johnson RF, Bjoraker RW, Downing JW, Jones DB (2000) Transfer of methohexital across the perfused human placenta. J Clin Anesth 12:25–30CrossRefPubMedGoogle Scholar
  40. 40.
    Lang C, Behnke H, Wulf H, Geldner G (2002) Plazentapassage von Anästhetika und Adjuvanzien. Anaesthesist 51:409–417CrossRefPubMedGoogle Scholar
  41. 41.
    Blouin RT, Conard PF, Gross JB (1991) Time course of ventilatory epression following induction doses of propofol and thiopental. Anesthesiology 75:940–944CrossRefPubMedGoogle Scholar
  42. 42.
    Blekkenhorst GH, Harrison GG, Cook ES et al (1980) Screening of certain anaesthetic agents for their ability to elicit acute porphyric phases in susceptible patients. Br J Anaesthesiol 52:759–763CrossRefGoogle Scholar
  43. 43.
    Sen S, Chini EN, Brown MJ (2005) Complications after unintentional intra-arterial injection of drugs: risks, outcomes, and management strategies. Mayo Clin Proc 80(6):783–795CrossRefPubMedGoogle Scholar
  44. 44.
    Ellens NR, Figueroa BE, Clark JC (2015) The use of barbiturate-induced coma during cerebrovascular neurosurgery procedures: a review of the literature. Brain Circ 1:140–145CrossRefGoogle Scholar
  45. 45.
    Hewitt M, Enoch SJ, Madden JC, Przybylak KR, Cronin TD (2013) Hepatoxicity: a scheme for generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action. Crit Rev Toxicol 43(7):537–558CrossRefPubMedGoogle Scholar
  46. 46.
    Stover JF, Stocker R (1998) Barbiturate coma may promote reversible bone marrow suppression in patients with severe isolated traumatic brain injury. Eur J Clin Pharmacol 54:529–534CrossRefPubMedGoogle Scholar
  47. 47.
    Rossaint R, Werner C, Zwissler B (2012) Hypnotika: Barbiturate, Propofol, Etomidat, 3. Aufl. Die Anästhesiologie. Springer, Berlin, Heidelberg, New York, S 191–203Google Scholar
  48. 48.
    Reznik ME, Berger K, Claassen J (2016) Comparison of intravenous anesthetic agents for the treatment of refractory status epilepticus. J Clin Med 5:54CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Holtkamp M (2016) Should barbiturates be used in refractory status epilepticus? J Clin Neurophysiol 33:22–24CrossRefPubMedGoogle Scholar
  50. 50.
    Claassen J, Hirsch LJ, Emerson RG, Mayer SA (2002) Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia 43:146–153CrossRefPubMedGoogle Scholar
  51. 51.
    Reznik ME, Berger K, Claassen J (2016) Comparison of intravenous anesthetic agents for the treatment of refractory status epilepticus. J Clin Med 5(54):E54.  https://doi.org/10.3390/jcm5050054 CrossRefPubMedGoogle Scholar
  52. 52.
    Bilotta F, Gelb AW, Stazi E, Titi L, Paoloni FP, Rosa G (2013) Pharmacological perioperative brain neuroprotection: a qualitative review of radomized clinical trials. Br J Anaesth 110(Suppl 1):i113–i120.  https://doi.org/10.1093/bja/aet059 CrossRefPubMedGoogle Scholar
  53. 53.
    Hindman BJ, Bayman EO, Pfisterer WK, Torner JC, Todd MM (2009) No association between intraoperative hypothermia or supplemental protective drug and Neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery – findings from the intraoperative hypothermia for aneurysm surgery trial. Anesthesiology 112:86–101CrossRefGoogle Scholar
  54. 54.
    Ellens NR, Figueroa BE, Clark JC (2015) The use of barbiturate-induced coma during cerebrovascular neurosurgery procedures: A review of the literature. Brain Circulation 1:140–145Google Scholar
  55. 55.
    Yamamoto N, Arima H, Sugiura T, Hirate H, Taniura H, Suzuki K, Sobue K (2013) Propofol and thiopental suppress amyloid fibril formation and GM1 gangliosid expression through the γ‑aminobutyric acid A receptor. Anesthesiology 118(6):1408–1416CrossRefPubMedGoogle Scholar
  56. 56.
    Conway CM, Ellis DB (1969) The haemodynamic effects of short acting barbiturates. Br J Anaesthesiol 41:414Google Scholar
  57. 57.
    Mulier JP, Wouters PF, Van Aken H, Vermaut G, Vandermeersch E (1991) Cardiodynamic effects of propofol in comparison with thiopental: assessment with a transesophageal echocardiographic approach. Anesth Analg 72:28–35CrossRefPubMedGoogle Scholar
  58. 58.
    Brossy MJ, James MFM, Janicki PK (1994) Haemodynamic and catecholamine changes after induction of anaesthesia with either thiopentone or propofol with suxamethonium. Br J Anaesth 72:596–598CrossRefPubMedGoogle Scholar
  59. 59.
    Marcus HE, Behrend A, Schir R, Dagtekin O, Teschendorf P, Böttiger BW, Spöhr F (2011) Anästhesiologisches Management der Sectio caesarea – Deutschlandweite Umfrage. Anästhesist 60:916–928CrossRefGoogle Scholar
  60. 60.
    Murdoch H, Scrutton M, Laxton CM (2013) Choice of anaesthetic agents for caesarean section. A UK survey of current practice. Int J Obstet Anesth 22:31–35CrossRefPubMedGoogle Scholar
  61. 61.
    Rucklidge M (2013) Up-to-date or out-of-date: does thiopental have a future in obstetric general anaesthesia? Int J Obstet Anesth 22:175–178CrossRefPubMedGoogle Scholar
  62. 62.
    Chaggar RS, Campbell JP (2017) The future of general anaesthesia in obstetrics. BJA Educ 17(3):83–79CrossRefGoogle Scholar
  63. 63.
    Devroe S, Van de Velde M, Rex S (2015) General anesthesia for caesarean section. Curr Opin Anaesthesiol 28:240–246CrossRefPubMedGoogle Scholar
  64. 64.
    Schmidt J, Strauß JM, Becke K, Giest J, Schmitz B (2007) Handlungsempfehlung zur Rapid-Sequence-Induction im Kindesalter. Anästh Intensivmed 48:88–93Google Scholar

Weiterführende Literatur

  1. 65.
    Olson RW (1982) Drug interactions at the GABA receptor ionophore complex. Annu Rev Pharmacol Toxicol 22:245–247CrossRefGoogle Scholar
  2. 66.
    Stuart P (1955) Intra-arterial thiopentone; report of a case. Br Med J 2(4951):1308–1309CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinKlinikum AugsburgAugsburgDeutschland

Personalised recommendations