Advertisement

Der Anaesthesist

, Volume 67, Issue 3, pp 225–244 | Cite as

Hypovolämisch-hämorrhagischer Schock

CME
  • 4k Downloads

Zusammenfassung

Der Begriff „Schock“ bezeichnet eine lebensbedrohliche Kreislaufsituation durch ein Missverhältnis von Sauerstoffangebot und -bedarf auf zellulärer Ebene. Der hypovolämische Schock ist durch ein reduziertes intravaskuläres Volumen und eine konsekutiv verminderte Vorlast gekennzeichnet. Der Körper kompensiert Volumenverluste durch ein erhöhtes Schlagvolumen, eine erhöhte Herzfrequenz, eine erhöhte Sauerstoffextraktionsrate und im Verlauf durch eine erhöhte Konzentration an 2,3-Diphosphoglyzerat mit Rechtsverschiebung der Sauerstoffbindungskurve. Ein hypovolämisch-hämorrhagischer Schock hat Auswirkungen auf die Makro- und die Mikrozirkulation und damit auf zahlreiche Organsysteme (z. B. Nieren, Endokrinium, Endothel).

Zur weiteren Identifizierung eines blutungsbedingten Schockzustands werden Vitalfunktionen, Gerinnungstest und bildgebende Verfahren eingesetzt. Krankenhäuser sollten über spezifische Protokolle für Massivtransfusionen verfügen. Eine differenzierte systemische Blutungstherapie beinhaltet neben der Aufrechterhaltung einer adäquaten Homöostase den Einsatz von Blutprodukten und Gerinnungsfaktoren.

Schlüsselwörter

Blutung Massivtransfusion Pathophysiologie Gerinnungstherapie Homöostase 

Hypovolemic and hemorrhagic shock

Abstract

The term “shock” refers to a life-threatening circulatory failure caused by an imbalance between the supply and demand of cellular oxygen. Hypovolemic shock is characterized by a reduction of intravascular volume and a subsequent reduction in preload. The body compensates the loss of volume by increasing the stroke volume, heart frequency, oxygen extraction rate, and later by an increased concentration of 2,3-diphosphoglycerate with a rightward shift of the oxygen dissociation curve. Hypovolemic hemorrhagic shock impairs the macrocirculation and microcirculation and therefore affects many organ systems (e.g. kidneys, endocrine system and endothelium). For further identification of a state of shock caused by bleeding, vital functions, coagulation tests and hematopoietic procedures are implemented. Every hospital should be in possession of a specific protocol for massive transfusions. The differentiated systemic treatment of bleeding consists of maintenance of an adequate homeostasis and the administration of blood products and coagulation factors.

Keywords

Bleeding Massive transfusion Pathophysiology Coagulation therapy Homeostasis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H. Lier erhielt Vortragshonorare und Reisekostenerstattungen von Bayer Vital, Blutspendedienst West (DRK), CSL Behring, Ferring, Mitsubishi Pharma, NovoNordisk, Tem International. M. Bernhard und B. Hossfeld geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Brooks B, Blalock A (1934) Shock with Particular Reference to That Due to Haemorrhage and Trauma to Muscles. Ann Surg 100:728–733CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weil MH, Shubin H (1971) Proposed reclassification of shock states with special reference to distributive defects. Adv Exp Med Biol 23:13–23CrossRefPubMedGoogle Scholar
  3. 3.
    Gaieski D, Mikkelsen M (2017) Definition, classificatio, etiology, and pathophysiology of shock in adults. https://www.uptodate.com/contents/definition-classification-etiology- and-pathophysiology-of-shock-in-adults?source=search_result&search=shock&selectedTitle=1~150 Zugegriffen: 12. Aug 2017
  4. 4.
    Eiben TI, Fuhrmann V, Saugel B et al (2017) Hamorrhagischer Schock : Allgemeine Therapieprinzipien. Internist (Berl) 58:207–217CrossRefGoogle Scholar
  5. 5.
    Guly HR, Bouamra O, Little R et al (2010) Testing the validity of the ATLS classification of hypovolaemic shock. Resuscitation 81:1142–1147CrossRefPubMedGoogle Scholar
  6. 6.
    Mutschler M, Paffrath T, Wolfl C et al (2014) The ATLS(®) classification of hypovolaemic shock: a well established teaching tool on the edge? Injury 45. Suppl, Bd. 3, S 35–38Google Scholar
  7. 7.
    Kettley L, Marsh A (2015) Hypovolaemia. Anaesthesia and. Intensive Care Med 17:31–34Google Scholar
  8. 8.
    Koscielny J, Beyer-Westendorf J, Von Heymann C et al (2012) Blutungsrisiko und Blutungsnotfalle unter Rivaroxaban. Periinterventionelles Hamostasemanagement. Hamostaseologie 32:287–293CrossRefPubMedGoogle Scholar
  9. 9.
    Heck M, Fresenius M, Busch CH (2017) Repetitorium Anästhesiologie. Für die Facharztprüfung und das Europäische Diplom. 8., überarbeitete Auflage 2017. Springer, BerlinGoogle Scholar
  10. 10.
    Gutierrez G, Reines HD, Wulf-Gutierrez ME (2004) Clinical review: hemorrhagic shock. Crit Care 8:373–381CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gupta B, Garg N, Ramachandran R (2017) Vasopressors: Do they have any role in hemorrhagic shock? J Anaesthesiol Clin Pharmacol 33:3–8CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schiller AM, Howard JT, Convertino VA (2017) The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage. Exp Biol Med (maywood) 242:874–883CrossRefGoogle Scholar
  13. 13.
    Rickards CA (2015) Cerebral Blood-Flow Regulation During Hemorrhage. Compr Physiol 5:1585–1621CrossRefPubMedGoogle Scholar
  14. 14.
    Libert N, Harrois A, Duranteau J (2016) Haemodynamic coherence in haemorrhagic shock. Best Pract Res Clin Anaesthesiol 30:429–435CrossRefPubMedGoogle Scholar
  15. 15.
    Tachon G, Harrois A, Tanaka S et al (2014) Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 42:1433–1441CrossRefPubMedGoogle Scholar
  16. 16.
    White NJ, Ward KR, Pati S et al (2017) Hemorrhagic blood failure: Oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg 82:S41–S49CrossRefPubMedGoogle Scholar
  17. 17.
    Guerado E, Medina A, Mata MI et al (2016) Protocols for massive blood transfusion: when and why, and potential complications. Eur J Trauma Emerg Surg 42:283– 295CrossRefPubMedGoogle Scholar
  18. 18.
    Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) (2016) Überarbeitete S3-Leitlinie „Polytrauma/Schwerverletzten-Behandlung“ 012-019. http://www.awmf.org/leitlinien/detail/ll/012-019.html Zugegriffen: 12.Feb 2017
  19. 19.
    Gall LS, Brohi K, Davenport RA (2017) Diagnosis and Treatment of Hyperfibrinolysis in Trauma (A European Perspective). Semin Thromb Hemost 43:224–234CrossRefPubMedGoogle Scholar
  20. 20.
    Pierce A, Pittet JF (2014) Practical understanding of hemostasis and approach to the bleeding patient in the OR. Adv Anesth 32:1–21CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ostrowski SR, Henriksen HH, Stensballe J et al (2017) Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg 82:293–301CrossRefPubMedGoogle Scholar
  22. 22.
    Kozar RA, Pati S (2015) Syndecan-1 restitution by plasma after hemorrhagic shock. J Trauma Acute Care Surg 78:S83–86CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hofmann N, Zipperle J, Jafarmadar M et al (2017) Experimental Models of Endotheliopathy. Impact, of Shock Severity. Shock, online-first  https://doi.org/10.1097/SHK.0000000000000944 Google Scholar
  24. 24.
    Adams HA, Baumann G, Casorbi I et al (2005) Zur Diagnostik und Therapie der Schockformen. Empfehlungen der Interdisziplinären Arbeitsgruppe Schock der DIVI – Teil II. Hypovolämischer Schock. Anästh Intensivmed 46:111–124Google Scholar
  25. 25.
    Gulati A (2016) Vascular Endothelium and Hypovolemic Shock. Curr Vasc Pharmacol 14:187–195CrossRefPubMedGoogle Scholar
  26. 26.
    Duchesne JC, Kaplan LJ, Balogh ZJ et al (2015) Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther 47:143–155CrossRefPubMedGoogle Scholar
  27. 27.
    Laher AE, Watermeyer MJ, Buchanan SK et al (2017) A review of hemodynamic monitoring techniques, methods and devices for the emergency physician. Am J Emerg Med 35:1335–1347CrossRefPubMedGoogle Scholar
  28. 28.
    Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gidwani H, Gomez H (2017) The crashing patient: hemodynamic collapse. Curr Opin Crit Care 23:533–540CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mok KL (2016) Make it SIMPLE: enhanced shock management by focused cardiac ultrasound. J Intensive Care 4:51CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF, Association of Scientific Medical Societies in Germany), (2016) AWMF-Leitlinie 015/063: Peripartale Blutungen, Diagnostik und Therapie. http://www.awmf.org/leitlinien/detail/ll/015-063.html Zugegriffen: 01 Dec 2016
  32. 32.
    Hiemstra B, Eck RJ, Keus F et al (2017) Clinical examination for diagnosing circulatory shock. Curr Opin Crit Care 23:293–301CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Truhlar A, Deakin CD, Soar J et al (2015) European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 95:148–201CrossRefPubMedGoogle Scholar
  34. 34.
    Butler FK (2016) Tactical Combat Casualty Care: Top Lessons for Civilian EMS Systems from 14 Years of War. J Spec Oper Med 16:120–137PubMedGoogle Scholar
  35. 35.
    Collicott P (1985) Advanved trauma life support course for physicians. J Am Coll Surg, New YorkGoogle Scholar
  36. 36.
    Deakin CD, Low JL (2000) Accuracy of the advanced trauma life support guidelines for predicting systolic blood pressure using carotid, femoral, and radial pulses: observational study. BMJ 321:673–674CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Galluccio ST, Chapman MJ, Finnis ME (2009) Femoral-radial arterial pressure gradients in critically ill patients. Crit Care Resusc 11:34–38PubMedGoogle Scholar
  38. 38.
    Lewin J, Maconochie I (2008) Capillary refill time in adults. Emerg Med J 25:325–326CrossRefPubMedGoogle Scholar
  39. 39.
    ASA (2015) Practice guidelines for perioperative blood management: an updated report by the american society of anesthesiologists task force on perioperative blood management. Anesthesiology 122:241–275CrossRefGoogle Scholar
  40. 40.
    Kozek-Langenecker SA, Ahmed AB, Afshari A et al (2017) Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology: First update 2016. Eur J Anaesthesiol 34:332–395CrossRefPubMedGoogle Scholar
  41. 41.
    Haas T, Fries D, Tanaka KA et al (2015) Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth 114:217–224CrossRefPubMedGoogle Scholar
  42. 42.
    Grottke O, Lier H, Hofer S (2017) Management von Blutungen unter Therapie mit direkten oralen Antikoagulanzien. Anaesthesist 66:679–689CrossRefPubMedGoogle Scholar
  43. 43.
    Bundesärztekammer (BÄK, German Medical Association), (2014) Querschnittsleitlinien der BÄK zur Therapie mit Blutkomponenten und Plasmaderivaten. 4. überarbeitete und aktualisierte Auflage 2014. http://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/QLL_Haemotherapie_2014.pdf Zugegriffen: 09. Dec 2015
  44. 44.
    Spahn DR, Bouillon B, Cerny V et al (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 17:R76CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brooke M, Yeung L, Miraflor E et al (2016) Lactate predicts massive transfusion in hemodynamically normal patients. J Surg Res 204:139–144CrossRefPubMedGoogle Scholar
  46. 46.
    Gustafson ML, Hollosi S, Chumbe JT et al (2015) The effect of ethanol on lactate and base deficit as predictors of morbidity and mortality in trauma. Am J Emerg Med 33:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gruartmoner G, Mesquida J, Ince C (2015) Fluid therapy and the hypovolemic microcirculation. Curr Opin Crit Care 21:276–284CrossRefPubMedGoogle Scholar
  48. 48.
    Boffard KD, Choong PI, Kluger Y et al. (2009) The treatment of bleeding is to stop the bleeding! Treatment of trauma-related hemorrhage. Transfusion 49 Suppl 5:240S–247SCrossRefGoogle Scholar
  49. 49.
    Hodgetts TJ, Mahoney PF, Russell MQ et al (2006) ABC to 〈C〉ABC: redefining the military trauma paradigm. Emerg Med J 23:745–746CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lier H, Bernhard M, Knapp J et al (2017) Ansatze zur prahospitalen Gerinnungstherapie : Aktuelle Ubersicht fur die zivile Notfallmedizin. Anaesthesist 66:867–878CrossRefPubMedGoogle Scholar
  51. 51.
    Gather A, Keil H, Wölff C (2017) C – Beckengurt, Tourniquet, Wundklemme. Notf Rettungsmed 20:127–131CrossRefGoogle Scholar
  52. 52.
    Kulla M, Hinck D (2014) Prähospitale Therapiestrategien für traumaassoziierte, kritische Blutungen. Notfall. M. B et al, Bd. 17, S 575–583Google Scholar
  53. 53.
    Van Oostendorp SE, Tan EC, Geeraedts LM Jr. (2016) Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand J Trauma Resusc Emerg Med 24:110CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lier H, Krep H, Schroeder S et al (2008) Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma 65:951–960CrossRefPubMedGoogle Scholar
  55. 55.
    Giannoudi M, Harwood P (2016) Damage control resuscitation: lessons learned. Eur J Trauma Emerg Surg 42:273–282CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Holcomb JB, Donathan DP, Cotton BA et al (2015) Prehospital Transfusion of Plasma and Red Blood Cells in Trauma Patients. Prehosp Emerg Care 19:1–9CrossRefPubMedGoogle Scholar
  57. 57.
    Rahbar E, Fox EE, Del Junco DJ et al (2013) Early resuscitation intensity as a surrogate for bleeding severity and early mortality in the PROMMTT study. J Trauma Acute Care Surg 75:S16–23CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Savage SA, Zarzaur BL, Croce MA et al (2013) Redefining massive transfusion when every second counts. J Trauma Acute Care Surg 74:396–400CrossRefPubMedGoogle Scholar
  59. 59.
    Roberts DJ, Bobrovitz N, Zygun DA et al (2016) Indications for Use of Damage Control Surgery in Civilian Trauma Patients: A Content Analysis and Expert Appropriateness Rating Study. Ann Surg 263:1018–1027CrossRefPubMedGoogle Scholar
  60. 60.
    Rossaint R, Bouillon B, Cerny V et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20:100CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Roberts DJ, Zygun DA, Faris PD et al (2016) Opinions of Practicing Surgeons on the Appropriateness of Published Indications for Use of Damage Control Surgery in Trauma Patients: An International Cross-Sectional Survey. J Am Coll Surg 223:515–529CrossRefPubMedGoogle Scholar
  62. 62.
    Cannon W, Frawer J, Cowell E (1918) The preventive treatment of wound shock. JAMA, Bd. 70, S 618–621Google Scholar
  63. 63.
    Beecher HK (1946) Resuscitation and anesthesia. Anesthesiology 7:644–650CrossRefPubMedGoogle Scholar
  64. 64.
    Sondeen JL, Coppes VG, Holcomb JB (2003) Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma 54:S110–117CrossRefPubMedGoogle Scholar
  65. 65.
    Morrison CA, Carrick MM, Norman MA et al (2011) Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma 70:652–663CrossRefPubMedGoogle Scholar
  66. 66.
    Asehnoune K, Balogh Z, Citerio G et al (2017) The research agenda for trauma critical care. Intensive Care Med 43:1340–1351CrossRefPubMedGoogle Scholar
  67. 67.
    Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) (2014) S3-Leitlinie 001/020 „Volumentherapie des Erwachsenen“. http://www.awmf.org/uploads/tx_szleitlinien/001-020l_S3_Intravasale_Volumentherapie_Erwachsene_2014-09.pdf Zugegriffen: 14. Oct 2014
  68. 68.
    Funk M, Heiden M, Volz-Zang C (2017) Hämovigilanz- Bericht des Paul-Ehrlich-Institutes 2015. Auswertung der Meldungen von schweren Reaktionen und Zwischenfällen nach § 63i AMG. http://www.pei.de/DE/arzneimittelsicherheit-vigilanz/haemovigilanz/haemovigilanzberichte/haemovigilanzberichte- node.html Zugegriffen: 02. Jul 2017
  69. 69.
    Meybohm P, Choorapoikayil S, Wessels A et al (2016) Washed cell salvage in surgical patients: A review and meta-analysis of prospective randomized trials under PRISMA. Medicine (Baltimore) 95:e4490CrossRefGoogle Scholar
  70. 70.
    Patel EU, Ness PM, Marshall CE et al (2017) Medical Center. Anesth. Blood Product Utilization Among Trauma and Nontrauma Massive Transfusion Protocols at an, Bd. 125. Academic Press, Urban, S 967–974Google Scholar
  71. 71.
    Bundesärztekammer (BÄK, German Medical Association), (2017) Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie) Gesamtnovelle 2017. http://www.bundesaerztekammer.de/aerzte/medizin-ethik/wissenschaftlicher-beirat/veroeffentlichungen/haemotherapie- transfusionsmedizin/richtlinie/ Zugegriffen: 06. Aug 2017
  72. 72.
    Levy JH, Grottke O, Fries D et al (2017) Therapeutic Plasma Transfusion in Bleeding Patients: A Systematic Review. Anesth Analg 124:1268–1276CrossRefPubMedGoogle Scholar
  73. 73.
    Solheim B, Hellstern P (2010) Pathogen Inactivation of Plasma and Cryoprecipitate. In: AuBuchon J, Prowse C (eds) Pathogen Inactivation: The Penultimale Paradigm Shift. AABB Press, Bethesda, MO, p 69–98 Google Scholar
  74. 74.
    Holcomb JB, Tilley BC, Baraniuk S et al (2015) Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA, Bd. 313, S 471–482Google Scholar
  75. 75.
    Hess JR, Holcomb JB (2015) Resuscitating PROPPRly. Transfusion 55:1362–1364CrossRefPubMedGoogle Scholar
  76. 76.
    Watson JJ, Pati S, Schreiber MA (2016) Plasma Transfusion: History, Current Realities, and Novel Improvements. Shock 46:468–479CrossRefPubMedGoogle Scholar
  77. 77.
    Ponschab M, Schochl H, Gabriel C et al (2015) Haemostatic profile of reconstituted blood in a proposed 1:1:1 ratio of packed red blood cells, platelet concentrate and four different plasma preparations. Anaesthesia 70:528–536CrossRefPubMedGoogle Scholar
  78. 78.
    Spinella PC, Reddy HL, Jaffe JS et al (2012) Fresh whole blood use for hemorrhagic shock: preserving benefit while avoiding complications. Anesth Analg 115:751–758CrossRefPubMedGoogle Scholar
  79. 79.
    Lier H, Vorweg M, Hanke A et al (2013) Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hamostaseologie 33:51–61CrossRefPubMedGoogle Scholar
  80. 80.
    Maegele M, Caspers M, Schochl H (2017) Viskoelastizitatsbasierte Therapie beim blutenden Schwerverletzten. Unfallchirurg 120:769–785CrossRefPubMedGoogle Scholar
  81. 81.
    Wirtz MR, Baumann HM, Klinkspoor JH et al (2017) Viscoelastic Testing in Trauma. Semin Thromb Hemost 43:375–385CrossRefPubMedGoogle Scholar
  82. 82.
    Innerhofer P, Fries D, Mittermayr M et al. (2017) Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol, online-first, DOI:  https://doi.org/10.1016/S2352-3026(17)30077-7 Google Scholar
  83. 83.
    Gonzalez E, Moore EE, Moore HB et al (2016) Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann Surg 263:1051–1059CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gayet-Ageron A, Prieto-Merino D, Ker K et al (2017) Effect of treatment delay on the effectiveness and safety of antifibrinolytics in acute severe haemorrhage: a meta-analysis of individual patient-level data from 40 138. Bleeding Patients Lancet Online-first Doi.  https://doi.org/10.1016/S0140-6736(17)32455-8 Google Scholar
  85. 85.
    Schlimp CJ, Ponschab M, Voelckel W et al (2016) Fibrinogen levels in trauma patients during the first seven days after fibrinogen concentrate therapy: a retrospective study. Scand J Trauma Resusc Emerg Med 24:29CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Schochl H, Voelckel W, Maegele M et al. (2014) Endogenous thrombin potential following hemostatic therapy with 4-factor prothrombin complex concentrate: A 7-day observational study of trauma patients. Critical Care:R147Google Scholar
  87. 87.
    Stein P, Kaserer A, Sprengel K et al (2017) Change of transfusion and treatment paradigm in major trauma patients. Anaesthesia 72:1317–1326CrossRefPubMedGoogle Scholar
  88. 88.
    Arbeitsgemeinschaft Der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) (2015) S3-Leitlinie 003-001: Prophylaxe der venösen Thromboembolie (VTE). http://www.awmf.org/leitlinien/detail/ll/003-001.html Zugegriffen: 29. Oct 2015
  89. 89.
    Hincker A, Feit J, Sladen RN et al (2014) Rotational thromboelastometry predicts thromboembolic complications after major non-cardiac surgery. Crit Care 18:549CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kolbenschlag J, Daigeler A, Lauer S et al (2014) Can rotational thromboelastometry predict thrombotic complications in reconstructive microsurgery? Microsurgery 34:253–260CrossRefPubMedGoogle Scholar
  91. 91.
    Rossetto V, Spiezia L, Senzolo M et al (2013) Whole blood rotation thromboelastometry (ROTEM(R)) profiles in subjects with non-neoplastic portal vein thrombosis. Thromb Res 132:e131–134CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum Köln (AöR)KölnDeutschland
  2. 2.Sektion „Hämotherapie und Hämostasemanagement“Deutsche Gesellschaft für Intensiv- und Notfallmedizin (DIVI)BerlinDeutschland
  3. 3.Arbeitsgruppe „Taktische Medizin“, Wissenschaftlicher Arbeitskreis NotfallmedizinDeutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI)NürnbergDeutschland
  4. 4.Zentrale NotaufnahmeUniversitätsklinikum LeipzigLeipzigDeutschland
  5. 5.Arbeitsgruppe „Trauma- und Schockraummanagement“, Wissenschaftlicher Arbeitskreis NotfallmedizinDeutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI)NürnbergDeutschland
  6. 6.Klinik für Anästhesiologie & Intensivmedizin, Sektion NotfallmedizinBundeswehrkrankenhaus UlmUlmDeutschland
  7. 7.Sektion „Notfall- und Katastrophenmedizin“Deutsche Gesellschaft für Intensiv- und Notfallmedizin (DIVI)BerlinDeutschland

Personalised recommendations