Advertisement

Der Anaesthesist

, Volume 66, Issue 2, pp 128–133 | Cite as

Empfehlung zum Temperaturmanagement nach Atem-Kreislauf-Stillstand und schwerem Schädel-Hirn-Trauma im Kindesalter jenseits der Neonatalperiode

Stellungnahme der Gesellschaft für Neonatologie und Pädiatrische Intensivmedizin (GNPI) und der AG Kinderintensivmedizin des Wissenschaftlichen Arbeitskreises Kinderanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (WAKKA)
  • S. Brenner
  • C. Eich
  • G. Rellensmann
  • M. U. Schuhmann
  • T. Nicolai
  • F. Hoffmann
Leitlinien

Zusammenfassung

Die Datenlage zur Wirksamkeit der therapeutischen Hypothermie in verschiedenen Patientengruppen ist heterogen. Während der Nutzen in manchen Kollektiven belegt ist, beruhen Empfehlungen zum Einsatz der Hypothermietherapie in anderen Gruppen auf weniger robusten Daten und Analogieschlüssen. Der vorliegende Beitrag gibt eine Übersicht über den aktuellen Kenntnisstand des Temperaturmanagements in allen Altersgruppen und empfiehlt bei Kindern jenseits der Neonatalperiode nach einem Atem-Kreislauf-Stillstand oder schwerem Schädel-Hirn-Trauma ein aktiv kontrolliertes Temperaturmanagement, mit dem primären Ziel der strikten Normothermie (36,0–36,5 °C Körperkerntemperatur) für 72 Stunden.

Schlüsselwörter

Atem-Kreislauf-Stillstand Schädel-Hirn-Trauma Perinatale Asphyxie Postreanimations-Behandlung Temperaturmanagement 

Recommendation on temperature management after cardiopulmonary arrest and severe traumatic brain injury in childhood beyond the neonatal period

Statement of the German Society for Neonatology and Pediatric Intensive Care Medicine (GNPI) and the scientific Working Group for Paediatric Anaesthesia (WAKKA) of the German Society of Anaesthesiology and Intensive Care (DGAI)

Abstract

The available data on the effectiveness of therapeutic hypothermia in different patient groups are heterogeneous. Although the benefits have been proven for some collectives, recommendations for the use of hypothermia treatment in other groups are based on less robust data and conclusions by analogy. This article gives a review of the current evidence of temperature management in all age groups and based on this state of knowledge, recommends active temperature management with the primary aim of strict normothermia (36–36.5 °C) for 72 hours after cardiopulmonary arrest or severe traumatic brain injury for children beyond the neonatal period.

Keywords

Cardiac arrest Traumatic brain injury Perinatal asphyxia Postresuscitation care Temperature management 

Notes

Danksagung

Wir möchten uns bei Herrn Dr. Hemmen Sabir für die kritische Durchsicht der Therapieempfehlung herzlich bedanken.

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Brenner, C. Eich, G. Rellensmann, M. U. Schuhmann, T. Nicolai und F. Hoffmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Maconochie IK, Bingham R, Eich C et al (2015) European Resuscitation Council guidelines for resuscitation 2015: section 6. Paediatric life support. Resuscitation 95:223–248CrossRefPubMedGoogle Scholar
  2. 2.
    Callaway CW, Soar J, Aibiki M et al (2015) Part 4: advanced life support: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 132(16 Suppl 1):S84–S145CrossRefPubMedGoogle Scholar
  3. 3.
    Scholefield BR, Duncan HP, Morris KP (2010) Survey of the use of therapeutic hypothermia post cardiac arrest. Arch Dis Child 95(10):796–799CrossRefPubMedGoogle Scholar
  4. 4.
    Scholefield BR, Lyttle MD, Berry K, Duncan HP, Morris KP (2013) Survey of the use of therapeutic hypothermia after cardiac arrest in UK paediatric emergency departments. Emerg Med J 30(1):24–27CrossRefPubMedGoogle Scholar
  5. 5.
    Hoffmann F, Rüdiger M, Nicolai T, Brenner S (2011) Retrospektive Umfrage zur Häufigkeit von Reanimationen und Hypothermiebehandlungen auf pädiatrischen Intensivstationen in Deutschland. DIVI 2(4):20–24Google Scholar
  6. 6.
    Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):329–338CrossRefPubMedGoogle Scholar
  7. 7.
    Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. doi: 10.1002/14651858.cd003311 Google Scholar
  8. 8.
    Azzopardi D, Strohm B, Marlow N et al (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371(2):140–149CrossRefPubMedGoogle Scholar
  9. 9.
    Guillet R, Edwards AD, Thoresen M et al (2012) Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr Res 71(2):205–209CrossRefPubMedGoogle Scholar
  10. 10.
    Shankaran S, Pappas A, McDonald SA et al (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366(22):2085–2092CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eicher DJ, Wagner CL, Katikaneni LP et al (2005) Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 32(1):18–24CrossRefPubMedGoogle Scholar
  12. 12.
    Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultursay N (2003) Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. Prostaglandins Leukot Essent Fatty Acids 69(1):45–50CrossRefPubMedGoogle Scholar
  13. 13.
    Azzopardi DV, Strohm B, Edwards AD et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361(14):1349–1358CrossRefPubMedGoogle Scholar
  14. 14.
    Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365(9460):663–670CrossRefPubMedGoogle Scholar
  15. 15.
    Gunn AJ, Gluckman PD, Gunn TR (1998) Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics 102(4 Pt 1):885–892CrossRefPubMedGoogle Scholar
  16. 16.
    Jacobs SE, Morley CJ, Inder TE et al (2011) Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediatr Adolesc Med 165(8):692–700CrossRefPubMedGoogle Scholar
  17. 17.
    Lin ZL, Yu HM, Lin J, Chen SQ, Liang ZQ, Zhang ZY (2006) Mild hypothermia via selective head cooling as neuroprotective therapy in term neonates with perinatal asphyxia: an experience from a single neonatal intensive care unit. J Perinatol 26(3):180–184CrossRefPubMedGoogle Scholar
  18. 18.
    Shankaran S, Laptook A, Wright LL et al (2002) Whole-body hypothermia for neonatal encephalopathy: Animal observations as a basis for a randomized, controlled pilot study in term infants. Pediatrics 110(2):377–385CrossRefPubMedGoogle Scholar
  19. 19.
    Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584CrossRefPubMedGoogle Scholar
  20. 20.
    Simbruner G, Mittal RA, Rohlmann F, Muche R (2010) Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 126(4):e771–e778CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou WH, Cheng GQ, Shao XM et al (2010) Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: a multicenter randomized controlled trial in China. J Pediatr 157(3):367–372CrossRefPubMedGoogle Scholar
  22. 22.
    Laptook AR, McDonald SA, Shankaran S et al (2013) Elevated temperature and 6‑ to 7‑year outcome of neonatal encephalopathy. Ann Neurol 73(4):520–528CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shankaran S, Laptook AR, Pappas A et al (2014) Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA 312(24):2629–2639CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wyllie J, Perlman JM, Kattwinkel J et al (2015) Part 7: neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 95:e169–e201CrossRefPubMedGoogle Scholar
  25. 25.
    Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556CrossRefGoogle Scholar
  26. 26.
    Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563CrossRefPubMedGoogle Scholar
  27. 27.
    Arrich J, Holzer M, Havel C, Mullner M, Herkner H (2016) Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. doi: 10.1002/14651858.cd004128.pub4 Google Scholar
  28. 28.
    Kim F, Nichol G, Maynard C et al (2014) Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA 311(1):45–52CrossRefPubMedGoogle Scholar
  29. 29.
    Arrich J, Holzer M, Havel C, Warenits AM, Herkner H (2016) Pre-hospital versus in-hospital initiation of cooling for survival and neuroprotection after out-of-hospital cardiac arrest. Cochrane Database Syst Rev. doi: 10.1002/14651858.cd010570.pub2 Google Scholar
  30. 30.
    Nielsen N, Friberg H, Gluud C, Herlitz J, Wetterslev J (2011) Hypothermia after cardiac arrest should be further evaluated – a systematic review of randomised trials with meta-analysis and trial sequential analysis. Int J Cardiol 151(3):333–341CrossRefPubMedGoogle Scholar
  31. 31.
    Gebhardt K, Guyette FX, Doshi AA, Callaway CW, Rittenberger JC (2013) Prevalence and effect of fever on outcome following resuscitation from cardiac arrest. Resuscitation 84(8):1062–1067CrossRefPubMedGoogle Scholar
  32. 32.
    Leary M, Grossestreuer AV, Iannacone S et al (2013) Pyrexia and neurologic outcomes after therapeutic hypothermia for cardiac arrest. Resuscitation 84(8):1056–1061CrossRefPubMedGoogle Scholar
  33. 33.
    Winters SA, Wolf KH, Kettinger SA, Seif EK, Jones JS, Bacon-Baguley T (2013) Assessment of risk factors for post-rewarming „rebound hyperthermia“ in cardiac arrest patients undergoing therapeutic hypothermia. Resuscitation 84(9):1245–1249CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Wang B, Normoyle KP et al (2014) Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 8:307PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 369(23):2197–2206CrossRefPubMedGoogle Scholar
  36. 36.
    Maznyczka AM, Gershlick AH (2015) Therapeutic hypothermia in patients with out-of-hospital arrest. Heart 101(16):1265–1271CrossRefPubMedGoogle Scholar
  37. 37.
    Nolan JP, Soar J, Cariou A et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation 95:202–222CrossRefPubMedGoogle Scholar
  38. 38.
    Bustos R (2012) Therapeutic hypothermia after pediatric cardiac arrest. An Pediatr (Barc) 76(2):98–102CrossRefGoogle Scholar
  39. 39.
    Doherty DR, Parshuram CS, Gaboury I et al (2009) Hypothermia therapy after pediatric cardiac arrest. Circulation 119(11):1492–1500CrossRefPubMedGoogle Scholar
  40. 40.
    Fink EL, Clark RS, Kochanek PM, Bell MJ, Watson RS (2010) A tertiary care center’s experience with therapeutic hypothermia after pediatric cardiac arrest. Pediatr Crit Care Med 11(1):66–74CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kessler SK, Topjian AA, Gutierrez-Colina AM et al (2011) Short-term outcome prediction by electroencephalographic features in children treated with therapeutic hypothermia after cardiac arrest. Neurocrit Care 14(1):37–43CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lin JJ, Hsia SH, Wang HS, Chiang MC, Lin KL (2013) Therapeutic hypothermia associated with increased survival after resuscitation in children. Pediatr Neurol 48(4):285–290CrossRefPubMedGoogle Scholar
  43. 43.
    Topjian A, Hutchins L, DiLiberto MA et al (2011) Induction and maintenance of therapeutic hypothermia after pediatric cardiac arrest: efficacy of a surface cooling protocol. Pediatr Crit Care Med 12(3):e127–e135CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bistritz JF, Horton LM, Smaldone A (2015) Therapeutic hypothermia in children after cardiac arrest: a systematic review and meta-analysis. Pediatr Emerg Care 31(4):296–303CrossRefPubMedGoogle Scholar
  45. 45.
    Scholefield B, Duncan H, Davies P et al (2013) Hypothermia for neuroprotection in children after cardiopulmonary arrest. Cochrane Database Syst Rev 2:CD009442. doi: 10.1002/14651858.cd009442.pub2 Google Scholar
  46. 46.
    Moler FW, Silverstein FS, Holubkov R et al (2015) Therapeutic hypothermia after out-of-hospital cardiac arrest in children. N Engl J Med 372(20):1898–1908CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moler F, Dean JM (2016) 9: Therapeutic hypothermia after pediatric cardiac arrest in hospital trial. Crit Care Med 44(12 Suppl 1):89CrossRefGoogle Scholar
  48. 48.
    Rellensmann G, Masjosthusmann K, Brenner S (2012) Therapeutische Hypothermie bei Neugeborenen und Kindern. Intensivmed Up2date 8:193–204CrossRefGoogle Scholar
  49. 49.
    Georgiou AP, Manara AR (2013) Role of therapeutic hypothermia in improving outcome after traumatic brain injury: a systematic review. Br J Anaesth 110(3):357–367CrossRefPubMedGoogle Scholar
  50. 50.
    Maekawa T, Yamashita S, Nagao S, Hayashi N, Ohashi Y, Brain-Hypothermia Study Group (2015) Prolonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial. J Neurotrauma 32(7):422–429CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hifumi T, Kuroda Y, Kawakita K et al (2015) Fever control management is preferable to mild therapeutic hypothermia in traumatic brain injury patients with abbreviated injury scale 3–4: a multi-center, randomized controlled trial. J Neurotrauma 33(11):1047–1053. doi: 10.1089/neu.2015.4033 CrossRefPubMedGoogle Scholar
  52. 52.
    Bonds BW, Hu P, Li Y et al (2015) Predictive value of hyperthermia and intracranial hypertension on neurological outcomes in patients with severe traumatic brain injury. Brain Inj 29(13-14):1642–1647. doi: 10.3109/02699052.2015.1075157 CrossRefPubMedGoogle Scholar
  53. 53.
    Madden LK, DeVon HA (2015) A systematic review of the effects of body temperature on outcome after adult traumatic brain injury. J Neurosci Nurs 47(4):190–203CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Titus DJ, Furones C, Atkins CM, Dietrich WD (2015) Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Exp Neurol 263:254–262CrossRefPubMedGoogle Scholar
  55. 55.
    Diringer MN (2004) Treatment of fever in the neurologic intensive care unit with a catheter-based heat exchange system. Crit Care Med 32(2):559–564CrossRefPubMedGoogle Scholar
  56. 56.
    Henker RA, Brown SD, Marion DW (1998) Comparison of brain temperature with bladder and rectal temperatures in adults with severe head injury. Neurosurgery 42(5):1071–1075CrossRefPubMedGoogle Scholar
  57. 57.
    Smith CM, Adelson PD, Chang YF et al (2011) Brain-systemic temperature gradient is temperature-dependent in children with severe traumatic brain injury. Pediatr Crit Care Med 12(4):449–454CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Flynn LM, Rhodes J, Andrews PJ (2015) Therapeutic hypothermia reduces intracranial pressure and partial brain oxygen tension in patients with severe traumatic brain injury: preliminary data from the Eurotherm3235 trial. Ther Hypothermia Temp Manag 5(3):143–151CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sadaka F, Veremakis C (2012) Therapeutic hypothermia for the management of intracranial hypertension in severe traumatic brain injury: a systematic review. Brain Inj 26(7–8):899–908CrossRefPubMedGoogle Scholar
  60. 60.
    Andrews PJ, Sinclair HL, Rodriguez A et al (2015) Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 374(14):1383–1385. doi: 10.1056/nejmc1600339 Google Scholar
  61. 61.
    Ma C, He X, Wang L et al (2013) Is therapeutic hypothermia beneficial for pediatric patients with traumatic brain injury? A meta-analysis. Childs Nerv Syst 29(6):979–984CrossRefPubMedGoogle Scholar
  62. 62.
    Adelson PD, Ragheb J, Kanev P et al (2005) Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery 56(4):740–754CrossRefPubMedGoogle Scholar
  63. 63.
    Biswas AK, Bruce DA, Sklar FH, Bokovoy JL, Sommerauer JF (2002) Treatment of acute traumatic brain injury in children with moderate hypothermia improves intracranial hypertension. Crit Care Med 30(12):2742–2751CrossRefPubMedGoogle Scholar
  64. 64.
    Bourdages M, Bigras JL, Farrell CA, Hutchison JS, Lacroix J (2010) Cardiac arrhythmias associated with severe traumatic brain injury and hypothermia therapy. Pediatr Crit Care Med 11(3):408–414PubMedGoogle Scholar
  65. 65.
    Hutchison JS, Ward RE, Lacroix J et al (2008) Hypothermia therapy after traumatic brain injury in children. N Engl J Med 358(23):2447–2456CrossRefPubMedGoogle Scholar
  66. 66.
    Li H, Lu G, Shi W, Zheng S (2009) Protective effect of moderate hypothermia on severe traumatic brain injury in children. J Neurotrauma 26(11):1905–1909CrossRefPubMedGoogle Scholar
  67. 67.
    Salonia R, Empey PE, Poloyac SM et al (2010) Endothelin-1 is increased in cerebrospinal fluid and associated with unfavorable outcomes in children after severe traumatic brain injury. J Neurotrauma 27(10):1819–1825CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Adelson PD, Wisniewski SR, Beca J et al (2013) Comparison of hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a phase 3, randomised controlled trial. Lancet Neurol 12(6):546–553CrossRefPubMedGoogle Scholar
  69. 69.
    Beca J, McSharry B, Erickson S et al (2015) Hypothermia for traumatic brain injury in children – a phase II randomized controlled trial. Crit Care Med 43(7):1458–1466CrossRefPubMedGoogle Scholar
  70. 70.
    Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD (1997) Dramatic neuronal rescue with prolonged selective heed cooling after ischemia in fetal lambs. J Clin Investig 99(2):248–256CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chiu CC, Liao YE, Yang LY et al (2016) Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 272:38–49. doi: 10.1016/j.jneumeth.2016.06.018 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kinoshita K (2016) Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 4:29CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  • S. Brenner
    • 1
  • C. Eich
    • 2
  • G. Rellensmann
    • 3
  • M. U. Schuhmann
    • 4
  • T. Nicolai
    • 5
  • F. Hoffmann
    • 5
  1. 1.Neonatologie und pädiatrische Intensivmedizin, Klinik für Kinder- und JugendmedizinUniversitätsklinikum Carl Gustav Carus, TU DresdenDresdenDeutschland
  2. 2.Abteilung Anästhesie, Kinderintensiv- und NotfallmedizinKinder- und Jugendkrankenhaus AUF DER BULTHannoverDeutschland
  3. 3.Neonatologie und pädiatrische IntensivmedizinKlinik für Kinder- und Jugendmedizin – Allgemeine Pädiatrie, Universitätsklinikum MünsterMünsterDeutschland
  4. 4.Bereich Pädiatrische NeurochirurgieKlinik für Neurochirurgie, Universitätsklinikum TübingenTübingenDeutschland
  5. 5.Interdisziplinäre KinderintensivstationKinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Klinikum der Universität MünchenMünchenDeutschland

Personalised recommendations