Der Anaesthesist

, Volume 63, Issue 7, pp 578–588

Neue KDIGO-Leitlinien zur akuten Nierenschädigung

Praktische Handlungsempfehlungen
  • A. Zarbock
  • S. John
  • A. Jörres
  • D. Kindgen-Milles
Intensivmedizin

Zusammenfassung

Die akute Nierenschädigung („acute kidney injury“, AKI) hat bei kritisch kranken Patienten eine hohe Inzidenz und geht mit einer signifikant erhöhten Morbidität und Mortalität im Kurz- und Langzeitverlauf einher. Im Jahr 2012 wurden die KDIGO-Leitlinien (Kidney Disease Improving Global Outcome, KDIGO) publiziert, in denen evidenzbasierte praktische Empfehlungen zur Behandlung von Patienten mit AKI gegeben werden. Der 1. Teil der Leitlinien befasst sich mit der Vereinheitlichung von bisherigen Definitionen sowie der Schweregradeinteilung der AKI. In den weiteren Abschnitten wird unter Berücksichtigung der vorhandenen Evidenz auf Prävention, medikamentöse Therapie und Nierenersatztherapie bei Patienten mit AKI eingegangen. In jedem Abschnitt wird nach Darstellung der aktuellen Datenlage eine klare und gewichtete Behandlungsempfehlung ausgesprochen. Bei Nichtverfügbarkeit von spezifischen medikamentösen Therapien sind die wesentlichen Pfeiler einer effektiven Behandlung die frühe Diagnostik, die Vermeidung von Nephrotoxinen, eine aggressive hämodynamische Optimierung unter strikter Kontrolle des Volumenstatus sowie letztlich eine effektive, aber schonende Nierenersatztherapie.

Schlüsselwörter

Evidenzbasierte Medizin Akutes Nierenversagen Klassifikation Nierenersatzverfahren Kreatinin 

New KDIGO guidelines on acute kidney injury

Practical recommendations

Abstract

The incidence of acute kidney injury (AKI) in critically ill patients is very high and is associated with an increased morbidity and mortality. In 2012 the Kidney Disease: Improving Global Outcome (KDIGO) guidelines were published in which evidence-based practical recommendations are given for the evaluation and management of patients with AKI. The first section of the KDIGO guidelines deals with the unification of earlier consensus definitions and staging criteria for AKI. The subsequent sections of the guidelines cover the prevention and treatment of AKI as well as the management of renal replacement therapy (RRT) in patients with AKI. In each section the existing evidence is discussed and a specific treatment recommendation is given. The guidelines appreciates that there is insufficient evidence for many of the recommendations. As a specific pharmacological therapy is missing, an early diagnosis, aggressive hemodynamic optimization, tight volume control, and avoidance of nephrotoxic drugs are the only interventions to prevent AKI. If renal replacement therapy is required different modalities are available to provide an effective therapy with a low rate of adverse effects.

Keywords

Evidence-based medicine Kidney failure Classification Renal replacement therapy Creatinine 

Literatur

  1. 1.
    Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766PubMedCrossRefGoogle Scholar
  2. 2.
    Rewa O, Bagshaw SM (2014) Acute kidney injury – epidemiology, outcomes and economics. Nat Rev Nephrol 10:193–207PubMedCrossRefGoogle Scholar
  3. 3.
    Susantitaphong P et al (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8:1482–1493PubMedCrossRefGoogle Scholar
  4. 4.
    KDIGO AKI Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138CrossRefGoogle Scholar
  5. 5.
    Atkins D et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490PubMedCrossRefGoogle Scholar
  6. 6.
    Uhlig K et al (2006) Grading evidence and recommendations for clinical practice guidelines in nephrology. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 70:2058–2065PubMedGoogle Scholar
  7. 7.
    Hoste EA et al (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10:R73PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Uchino S et al (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34:1913–1917PubMedCrossRefGoogle Scholar
  9. 9.
    Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37PubMedCrossRefGoogle Scholar
  10. 10.
    Kellum JA, Bellomo R, Ronco C (2007) The concept of acute kidney injury and the RIFLE criteria. Contrib Nephrol 156:10–16PubMedCrossRefGoogle Scholar
  11. 11.
    Mehta RL et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bagshaw SM et al (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1203–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Thakar CV et al (2009) Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med 37:2552–2558PubMedCrossRefGoogle Scholar
  14. 14.
    Joannidis M et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–1702PubMedCrossRefGoogle Scholar
  15. 15.
    Amdur RL et al (2009) Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int 76:1089–1097PubMedCrossRefGoogle Scholar
  16. 16.
    Coca SG et al (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53:961–973PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wald R et al (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302:1179–1185PubMedCrossRefGoogle Scholar
  18. 18.
    Ad-hoc working group of ERBP et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27:4263–4272CrossRefGoogle Scholar
  19. 19.
    National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1–S266Google Scholar
  20. 20.
    Walsh M et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515PubMedCrossRefGoogle Scholar
  21. 21.
    Asfar P et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593PubMedCrossRefGoogle Scholar
  22. 22.
    Bouchard J et al (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76:422–427PubMedCrossRefGoogle Scholar
  23. 23.
    Payen D et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Finfer S et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256PubMedCrossRefGoogle Scholar
  25. 25.
    Annane D et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310:1809–1817PubMedCrossRefGoogle Scholar
  26. 26.
    Perner A et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134PubMedCrossRefGoogle Scholar
  27. 27.
    Myburgh JA et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911PubMedCrossRefGoogle Scholar
  28. 28.
    Yunos NM et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572PubMedCrossRefGoogle Scholar
  29. 29.
    Caironi P et al (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421PubMedCrossRefGoogle Scholar
  30. 30.
    Russell JA et al (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887PubMedCrossRefGoogle Scholar
  31. 31.
    De Backer D et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789CrossRefGoogle Scholar
  32. 32.
    Rivers E et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  33. 33.
    Dellinger RP et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637PubMedCrossRefGoogle Scholar
  34. 34.
    Lin SM et al (2006) A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26:551–557PubMedCrossRefGoogle Scholar
  35. 35.
    Donati A et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132:1817–1824PubMedCrossRefGoogle Scholar
  36. 36.
    Brienza N et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090PubMedCrossRefGoogle Scholar
  37. 37.
    Pro CI et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693CrossRefGoogle Scholar
  38. 38.
    Berghe G van den et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367PubMedCrossRefGoogle Scholar
  39. 39.
    Van den Berghe G et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461CrossRefGoogle Scholar
  40. 40.
    Griesdale DE et al (2009) Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180:821–827PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Investigators N.-S.S. et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297CrossRefGoogle Scholar
  42. 42.
    NICE-SUGAR Study Investigators et al (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118CrossRefGoogle Scholar
  43. 43.
    Karajala V, Mansour W, Kellum JA (2009) Diuretics in acute kidney injury. Minerva Anestesiol 75:251–257PubMedGoogle Scholar
  44. 44.
    Ho KM, Power BM (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65:283–293PubMedCrossRefGoogle Scholar
  45. 45.
    Cogliati AA et al (2007) Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth 21:847–850PubMedCrossRefGoogle Scholar
  46. 46.
    Morelli A et al (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33:2451–2456PubMedCrossRefGoogle Scholar
  47. 47.
    Tumlin JA et al (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46:26–34PubMedCrossRefGoogle Scholar
  48. 48.
    Ding H et al (1993) Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 91:2281–2287PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Friedlaender M et al (1995) Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA. J Am Soc Nephrol 5:1782–1791PubMedGoogle Scholar
  50. 50.
    Franklin SC et al (1997) Insulin-like growth factor I preserves renal function postoperatively. Am J Physiol 272(2 Pt 2):F257–F259PubMedGoogle Scholar
  51. 51.
    Hirschberg R et al (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55:2423–2432PubMedCrossRefGoogle Scholar
  52. 52.
    Hladunewich MA et al (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64:593–602PubMedCrossRefGoogle Scholar
  53. 53.
    Bellomo R (2006) The epidemiology of acute renal failure: 1975 versus 2005. Curr Opin Crit Care 12:557–560PubMedCrossRefGoogle Scholar
  54. 54.
    Bliziotis IA et al (2005) Ciprofloxacin vs an aminoglycoside in combination with a beta-lactam for the treatment of febrile neutropenia: a meta-analysis of randomized controlled trials. Mayo Clin Proc 80:1146–1156PubMedCrossRefGoogle Scholar
  55. 55.
    Falagas ME, Matthaiou DK, Bliziotis IA (2006) The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: a meta-analysis of comparative trials. J Antimicrob Chemother 57:639–647PubMedCrossRefGoogle Scholar
  56. 56.
    Falagas ME et al (2007) Meta-analysis: randomized controlled trials of clindamycin/aminoglycoside vs. beta-lactam monotherapy for the treatment of intra-abdominal infections. Aliment Pharmacol Ther 25:537–556PubMedCrossRefGoogle Scholar
  57. 57.
    Paul M et al (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328:668PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Paul M et al (2006) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 1:CD003344PubMedGoogle Scholar
  59. 59.
    Harbarth S et al (2002) Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis 35:e120–e127PubMedCrossRefGoogle Scholar
  60. 60.
    Ullmann AJ (2008) Nephrotoxicity in the setting of invasive fungal diseases. Mycoses 51(Suppl 1):25–30PubMedCrossRefGoogle Scholar
  61. 61.
    Cornely OA et al (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18(Suppl 7):19–37PubMedCrossRefGoogle Scholar
  62. 62.
    ACT Investigators (2011) Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation 124:1250–1259CrossRefGoogle Scholar
  63. 63.
    Bouman CS et al (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30:2205–2211PubMedCrossRefGoogle Scholar
  64. 64.
    Karvellas CJ et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care 15:R72PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dubois MJ et al (2006) Albumin administration improves organ function in critically ill hypoalbuminemic patients: a prospective, randomized, controlled, pilot study. Crit Care Med 34:2536–2540PubMedCrossRefGoogle Scholar
  66. 66.
    Prowle JR, Kirwan CJ, Bellomo R (2014) Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10:37–47PubMedCrossRefGoogle Scholar
  67. 67.
    Cruz DN et al (2010) Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med 36:444–451PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Liano F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 50:811–818PubMedCrossRefGoogle Scholar
  69. 69.
    Bagshaw SM et al (2006) Renal recovery after severe acute renal failure. Int J Artif Organs 29:1023–1030PubMedGoogle Scholar
  70. 70.
    Bellomo R et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–1638PubMedCrossRefGoogle Scholar
  71. 71.
    Palevsky PM et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20PubMedCrossRefGoogle Scholar
  72. 72.
    Uchino S et al (2009) Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med 37:2576–2582PubMedCrossRefGoogle Scholar
  73. 73.
    O’Grady NP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 23:759–769CrossRefGoogle Scholar
  74. 74.
    Vascular Access Work Group (2006) Clinical practice guidelines for vascular access. Am J Kidney Dis 48(Suppl 1):S176–S247CrossRefGoogle Scholar
  75. 75.
    Karakitsos D et al (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10:R162PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Leung J, Duffy M, Finckh A (2006) Real-time ultrasonographically-guided internal jugular vein catheterization in the emergency department increases success rates and reduces complications: a randomized, prospective study. Ann Emerg Med 48:540–547PubMedCrossRefGoogle Scholar
  77. 77.
    Pronovost P (2008) Interventions to decrease catheter-related bloodstream infections in the ICU: the Keystone Intensive Care Unit Project. Am J Infect Control 36:S171 e1–e5PubMedCrossRefGoogle Scholar
  78. 78.
    Jorres A et al (2013) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: part 2: renal replacement therapy. Nephrol Dial Transplant 28:2940–2945PubMedCrossRefGoogle Scholar
  79. 79.
    Rabindranath K et al (2007) Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev 3:CD003773PubMedGoogle Scholar
  80. 80.
    Pannu N et al (2008) Renal replacement therapy in patients with acute renal failure: a systematic review. JAMA 299:793–805PubMedCrossRefGoogle Scholar
  81. 81.
    Bagshaw SM et al (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–617PubMedCrossRefGoogle Scholar
  82. 82.
    Schefold JC et al (2014) The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit Care 18:R11PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Davenport A, Will EJ, Davison AM (1991) Continuous vs. intermittent forms of haemofiltration and/or dialysis in the management of acute renal failure in patients with defective cerebral autoregulation at risk of cerebral oedema. Contrib Nephrol 93:225–233PubMedGoogle Scholar
  84. 84.
    Davenport A, Will EJ, Davison AM (1990) Early changes in intracranial pressure during haemofiltration treatment in patients with grade 4 hepatic encephalopathy and acute oliguric renal failure. Nephrol Dial Transplant 5:192–198PubMedCrossRefGoogle Scholar
  85. 85.
    Davenport A (2009) Continuous renal replacement therapies in patients with liver disease. Semin Dial 22:169–172PubMedCrossRefGoogle Scholar
  86. 86.
    Davenport A (2009) Continuous renal replacement therapies in patients with acute neurological injury. Semin Dial 22:165–168PubMedCrossRefGoogle Scholar
  87. 87.
    Levraut J et al (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31:705–710PubMedCrossRefGoogle Scholar
  88. 88.
    Barenbrock M et al (2000) Effects of bicarbonate- and lactate-buffered replacement fluids on cardiovascular outcome in CVVH patients. Kidney Int 58:1751–1757PubMedCrossRefGoogle Scholar
  89. 89.
    McLean AG et al (2000) Effects of lactate-buffered and lactate-free dialysate in CAVHD patients with and without liver dysfunction. Kidney Int 58:1765–1772PubMedCrossRefGoogle Scholar
  90. 90.
    Tan HK, Uchino S, Bellomo R (2003) The acid-base effects of continuous hemofiltration with lactate or bicarbonate buffered replacement fluids. Int J Artif Organs 26:477–483PubMedGoogle Scholar
  91. 91.
    Zimmerman D et al (1999) Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant 14:2387–2391PubMedCrossRefGoogle Scholar
  92. 92.
    Ronco C et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30PubMedCrossRefGoogle Scholar
  93. 93.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Zarbock
    • 1
  • S. John
    • 3
  • A. Jörres
    • 4
  • D. Kindgen-Milles
    • 2
  1. 1.Klinik für Anästhesiologie, operative Intensivmedizin und SchmerztherapieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Klinik für AnästhesiologieUniversitätsklinikum Düsseldorf, Heinrich-Heine-UniversitätDüsseldorfDeutschland
  3. 3.Medizinische Klinik 4Universität Erlangen-NürnbergErlangenDeutschland
  4. 4.Medizinische Klinik m. S. Nephrologie und internistische IntensivmedizinCharité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations