Advertisement

Der Anaesthesist

, Volume 63, Issue 4, pp 313–325 | Cite as

Interaktion von Anästhetika und Analgetika mit Tumorzellen

  • A. BundschererEmail author
  • M. Malsy
  • D. Bitzinger
  • B.M. Graf
Allgemeinanästhesie

Zusammenfassung

Die Ergebnisse vieler Studien deuten darauf hin, dass die perioperative Phase eine vulnerable Phase darstellt, in der Tumorprogression und Metastasierung begünstigt werden. Die Kombination aus chirurgischer Manipulation und perioperativer Immunsuppression erhöht das Risiko einer Tumordissemination. Derzeit wird diskutiert, inwieweit Anästhesisten durch die Wahl des Narkoseverfahrens Einfluss auf das onkologische Outcome von Tumorpatienten nehmen können. Der vorliegende Beitrag gibt einen Überblick über molekulare Charakteristika von Tumorzellen sowie die Interaktion von Anästhetika und Analgetika mit Tumorzellen.

Schlüsselwörter

Tumor Apoptose Angiogenese Metastasierung Anästhetika 

Abkürzungen

CDK

„cyclin dependent kinase“ (zyklinabhängige Kinase)

COX

Zyklooxygenase

DNA

Desoxyribonukleinsäure

EGF

„endothelial growth factor“

EGFR

„epidermal growth factor receptor“

HIF

„hypoxia inducible factor“

ICAM

„intercellular adhesion molecule“ (intrazelluläres Adhäsionsmolekül)

IFN-γ

Interferon-γ

IL

Interleukin

MHC

„major histocompatibility complex“

MMP

Matrixmetalloproteinase

mTOR

„mammalian target of rapamycin“

NK-Zelle

natürliche Killerzelle

NSAR

nichtsteroidale Antirheumatika

PDA

Periduralanästhesie

PGE2

Prostaglandin 2

PVB

Paravertebralblock

SPA

Spinalanästhesie

TGF-β

„transforming growth factor β“

TH

T-Helferzellen

TIMP

„tissue inhibitor of metalloproteinase“

TNF-α

Tumor-Nekrose-Faktor α

VEGF

„vascular endothelial growth factor“

Interaction of anesthetics and analgesics with tumor cells

Abstract

The results of preclinical and clinical studies indicate that the perioperative period is a vulnerable period for cancer progression and metastasis. The risk of cancer cell dissemination is enhanced by the combination of surgical manipulation and perioperative immunosuppression. Whether the oncological outcome of cancer patients can be influenced by the choice of anesthetic techniques is still a matter of debate. This review summarizes the molecular characteristics of cancer and interaction of anesthetic and analgesic drugs with cancer cells.

Keywords

Cancer Apoptosis Angiogenesis Metastasis Anesthetics 

Notes

Einhaltung der ethischen Richtlinien

Interessenkonflikt. A. Bundscherer, M. Malsy, D. Bitzinger und B.M. Graf geben an, dass kein Interessenkonflikt besteht. Das vorliegende Manuskript enthält keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ackerstaff E, Gimi B, Artemov D et al (2007) Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia 9:222–235PubMedCentralPubMedGoogle Scholar
  2. 2.
    Bae MA, Pie JE, Song BJ (2001) Acetaminophen induces apoptosis of C6 glioma cells by activating the c-Jun NH(2)-terminal protein kinase-related cell death pathway. Mol Pharmacol 60:847–856PubMedGoogle Scholar
  3. 3.
    Basu GD, Pathangey LB, Tinder TL et al (2004) Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res 2:632–642PubMedGoogle Scholar
  4. 4.
    Ben-Eliyahu S (2003) The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology. Brain Behav Immun 17(Suppl 1):S27–S36PubMedGoogle Scholar
  5. 5.
    Bentley MW, Stas JM, Johnson JM et al (2005) Effects of preincisional ketamine treatment on natural killer cell activity and postoperative pain management after oral maxillofacial surgery. AANA J 73:427–436PubMedGoogle Scholar
  6. 6.
    Biki B, Mascha E, Moriarty DC et al (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology 109:180–187PubMedGoogle Scholar
  7. 7.
    Binczak M, Tournay E, Billard V et al (2013) Major abdominal surgery for cancer: does epidural analgesia have a long-term effect on recurrence-free and overall survival? Ann Fr Anesth Reanim 32:e81–e88PubMedGoogle Scholar
  8. 8.
    Bock JM, Menon SG, Sinclair LL et al (2007) Celecoxib toxicity is cell cycle phase specific. Cancer Res 67:3801–3808PubMedGoogle Scholar
  9. 9.
    Bundscherer A, Hafner C, Maisch T et al (2008) Antiproliferative and proapoptotic effects of rapamycin and celecoxib in malignant melanoma cell lines. Oncol Rep 19:547–553PubMedGoogle Scholar
  10. 10.
    Bundscherer A, Hafner C, Vogt T (2006) Neue stromaorientierte Therapieoptionen in der palliativen Tumortherapie. J Onkol 6:26–32Google Scholar
  11. 11.
    Bundscherer A, Reichle A, Hafner C et al (2009) Targeting the tumor stroma with peroxisome proliferator activated receptor (PPAR) agonists. Anticancer Agents Med Chem 9:816–821PubMedGoogle Scholar
  12. 12.
    Bundscherer A, Vogt T, Kohl G et al (2010) Antiproliferative effects of rapamycin and celecoxib in angiosarcoma cell lines. Anticancer Res 30:4017–4023PubMedGoogle Scholar
  13. 13.
    Capmas P, Billard V, Gouy S et al (2012) Impact of epidural analgesia on survival in patients undergoing complete cytoreductive surgery for ovarian cancer. Anticancer Res 32:1537–1542PubMedGoogle Scholar
  14. 14.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedGoogle Scholar
  15. 15.
    Castellano S, Kuck D, Sala M et al (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325PubMedGoogle Scholar
  16. 16.
    Cavallo F, De Giovanni C, Nanni P et al (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60:319–326PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chen JC, Chen Y, Su YH et al (2007) Celecoxib increased expression of 14-3-3sigma and induced apoptosis of glioma cells. Anticancer Res 27:2547–2554PubMedGoogle Scholar
  18. 18.
    Chen WK, Miao CH (2013) The effect of anesthetic technique on survival in human cancers: a meta-analysis of retrospective and prospective studies. PloS One 8:e56540PubMedCentralPubMedGoogle Scholar
  19. 19.
    Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823PubMedGoogle Scholar
  20. 20.
    Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206PubMedCentralPubMedGoogle Scholar
  21. 21.
    Cui W, Yu CH, Hu KQ (2005) In vitro and in vivo effects and mechanisms of celecoxib-induced growth inhibition of human hepatocellular carcinoma cells. Clin Cancer Res 11:8213–8221PubMedGoogle Scholar
  22. 22.
    Cusato M, Allegri M, Niebel T et al (2011) Flip-flop kinetics of ropivacaine during continuous epidural infusion influences its accumulation rate. Eur J Clin Pharmacol 67:399–406PubMedGoogle Scholar
  23. 23.
    Dandekar DS, Lopez M, Carey RI et al (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115:484–492PubMedGoogle Scholar
  24. 24.
    Dannenberg AJ, Altorki NK, Boyle JO et al (2001) Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2:544–551PubMedGoogle Scholar
  25. 25.
    Day A, Smith R, Jourdan I et al (2012) Retrospective analysis of the effect of postoperative analgesia on survival in patients after laparoscopic resection of colorectal cancer. Br J Anaesth 109:185–190PubMedGoogle Scholar
  26. 26.
    De Castro Junior G, Puglisi F, De Azambuja E et al (2006) Angiogenesis and cancer: a cross-talk between basic science and clinical trials (the „do ut des“ paradigm). Crit Rev Oncol Hematol 59:40–50Google Scholar
  27. 27.
    De Oliveira GS Jr, Ahmad S, Schink JC et al (2011) Intraoperative neuraxial anesthesia but not postoperative neuraxial analgesia is associated with increased relapse-free survival in ovarian cancer patients after primary cytoreductive surgery. Reg Anesth Pain Med 36:271–277Google Scholar
  28. 28.
    Dlamini Z, Mbita Z, Zungu M (2004) Genealogy, expression, and molecular mechanisms in apoptosis. Pharmacol Ther 101:1–15PubMedGoogle Scholar
  29. 29.
    Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. Faseb J 12:1063–1073PubMedGoogle Scholar
  30. 30.
    Duncan K, Uwimpuhwe H, Czibere A et al (2012) NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo. IUBMB Life 64:636–643PubMedGoogle Scholar
  31. 31.
    Ecimovic P, Murray D, Doran P et al (2011) Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth 107:916–923PubMedGoogle Scholar
  32. 32.
    Emanuelsson BM, Zaric D, Nydahl PA et al (1995) Pharmacokinetics of ropivacaine and bupivacaine during 21 hours of continuous epidural infusion in healthy male volunteers. Anesth Analg 81:1163–1168PubMedGoogle Scholar
  33. 33.
    Evans JF, Kargman SL (2004) Cancer and cyclooxygenase-2 (COX-2) inhibition. Curr Pharm Des 10:627–634PubMedGoogle Scholar
  34. 34.
    Exadaktylos AK, Buggy DJ, Moriarty DC et al (2006) Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 105:660–664PubMedCentralPubMedGoogle Scholar
  35. 35.
    Fassnacht M, Hahner S, Beuschlein F et al (2000) New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line. Eur J Clin Invest 30(Suppl 3):76–82PubMedGoogle Scholar
  36. 36.
    Favaloro B, Allocati N, Graziano V et al (2012) Role of apoptosis in disease. Aging 4:330–349PubMedCentralPubMedGoogle Scholar
  37. 37.
    Franchi S, Panerai AE, Sacerdote P (2007) Buprenorphine ameliorates the effect of surgery on hypothalamus-pituitary-adrenal axis, natural killer cell activity and metastatic colonization in rats in comparison with morphine or fentanyl treatment. Brain Behav Immun 21:767–774PubMedGoogle Scholar
  38. 38.
    Fried IA (1977) The influence of the anaesthetic on survival rates of breast cancer patients after surgery. Int J Cancer 20:213–218PubMedGoogle Scholar
  39. 39.
    Fujioka N, Nguyen J, Chen C et al (2011) Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg 113:1353–1364PubMedCentralPubMedGoogle Scholar
  40. 40.
    Fukui K, Werner C, Pestel G (2012) Influence of anesthesia procedure on malignant tumor outcome. Anaesthesist 61:193–201PubMedGoogle Scholar
  41. 41.
    Gach K, Szemraj J, Wyrebska A et al (2011) The influence of opioids on matrix metalloproteinase-2 and -9 secretion and mRNA levels in MCF-7 breast cancer cell line. Mol Biol Rep 38:1231–1236PubMedGoogle Scholar
  42. 42.
    Gallicchio M, Rosa AC, Dianzani C et al (2007) Celecoxib decreases expression of the adhesion molecules ICAM-1 and VCAM-1 in a colon cancer cell line (HT29). Br J Pharmacol 153:870–878PubMedCentralPubMedGoogle Scholar
  43. 43.
    Garib V, Niggemann B, Zanker KS et al (2002) Influence of non-volatile anesthetics on the migration behavior of the human breast cancer cell line MDA-MB-468. Acta Anaesthesiol Scand 46:836–844PubMedGoogle Scholar
  44. 44.
    Gaspani L, Bianchi M, Limiroli E et al (2002) The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J Neuroimmunol 129:18–24PubMedGoogle Scholar
  45. 45.
    Gaylord HR, Simpson BT (1916) The effect of certain anesthetics and loss of blood upon the growth of transplanted mouse cancer. J Cancer Res 1:379–380Google Scholar
  46. 46.
    Goldfarb Y, Ben-Eliyahu S (2006) Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis 26:99–114PubMedGoogle Scholar
  47. 47.
    Gottschalk A, Ford JG, Regelin CC et al (2010) Association between epidural analgesia and cancer recurrence after colorectal cancer surgery. Anesthesiology 113:27–34PubMedGoogle Scholar
  48. 48.
    Gottschalk A, Pogatzki-Zahn H, Van Aken A (2011) Anesthesie und Tumorprogression- Fiktion oder Realität. Anasth Intensivmed 52:876–888Google Scholar
  49. 49.
    Gottschalk A, Sharma S, Ford J et al (2010) Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg 110:1636–1643PubMedGoogle Scholar
  50. 50.
    Grosch S, Tegeder I, Niederberger E et al (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15:2742–2744PubMedGoogle Scholar
  51. 51.
    Gupta A, Bjornsson A, Fredriksson M et al (2011) Reduction in mortality after epidural anaesthesia and analgesia in patients undergoing rectal but not colonic cancer surgery: a retrospective analysis of data from 655 patients in central Sweden. Br J Anaesth 107:164–170PubMedGoogle Scholar
  52. 52.
    Gupta K, Kshirsagar S, Chang L et al (2002) Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res 62:4491–4498PubMedGoogle Scholar
  53. 53.
    Hafner C, Reichle A, Vogt T (2005) New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. Curr Cancer Drug Targets 5:393–419PubMedGoogle Scholar
  54. 54.
    Han C, Leng J, Demetris AJ et al (2004) Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 64:1369–1376PubMedGoogle Scholar
  55. 55.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  56. 56.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedGoogle Scholar
  57. 57.
    Harnagea-Theophilus E, Gadd SL, Knight-Trent AH et al (1999) Acetaminophen-induced proliferation of breast cancer cells involves estrogen receptors. Toxicol Appl Pharmacol 155:273–279PubMedGoogle Scholar
  58. 58.
    Hatsukari I, Hitosugi N, Ohno R et al (2007) Induction of apoptosis by morphine in human tumor cell lines in vitro. Anticancer Res 27:857–864PubMedGoogle Scholar
  59. 59.
    He Q, Luo X, Jin W et al (2007) Celecoxib and a novel COX-2 inhibitor ON09310 upregulate death receptor 5 expression via GADD153/CHOP. Oncogene 27:2656–2660PubMedGoogle Scholar
  60. 60.
    Herminghaus A, Wachowiak M, Wilhelm W et al (2011) Intravenous administration of lidocaine for perioperative analgesia. Review and recommendations for practical usage. Anaesthesist 60:152–160PubMedGoogle Scholar
  61. 61.
    Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502PubMedCentralPubMedGoogle Scholar
  62. 62.
    Hossain MA, Kim DH, Jang JY et al (2012) Aspirin enhances doxorubicin-induced apoptosis and reduces tumor growth in human hepatocellular carcinoma cells in vitro and in vivo. Int J Oncol 40:1636–1642PubMedGoogle Scholar
  63. 63.
    Hossain MA, Kim DH, Jang JY et al (2012) Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol 40:1298–1304PubMedCentralPubMedGoogle Scholar
  64. 64.
    Iglesias M, Segura MF, Comella JX et al (2003) Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology 44:482–492PubMedGoogle Scholar
  65. 65.
    Jun R, Gui-He Z, Xing-Xing S et al (2011) Isoflurane enhances malignancy of head and neck squamous cell carcinoma cell lines: a preliminary study in vitro. Oral Oncol 47:329–333PubMedGoogle Scholar
  66. 66.
    Kardosh A, Blumenthal M, Wang WJ et al (2004) Differential effects of selective COX-2 inhibitors on cell cycle regulation and proliferation of glioblastoma cell lines. Cancer Biol Ther 3:55–62PubMedGoogle Scholar
  67. 67.
    Katzav S, Shapiro J, Segal S et al (1986) General anesthesia during excision of a mouse tumor accelerates postsurgical growth of metastases by suppression of natural killer cell activity. Isr J Med Sci 22:339–345PubMedGoogle Scholar
  68. 68.
    Kawaraguchi Y, Horikawa YT, Murphy AN et al (2011) Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via caveolins. Anesthesiology 115:499–508PubMedCentralPubMedGoogle Scholar
  69. 69.
    Kerros C, Brood I, Sola B et al (2010) Reduction of cell proliferation and potentiation of Fas-induced apoptosis by the selective kappa-opioid receptor agonist U50 488 in the multiple myeloma LP-1 cells. J Neuroimmunol 220:69–78PubMedGoogle Scholar
  70. 70.
    Knight RA, Melino G (2011) Cell death in disease: from 2010 onwards. Cell Death Dis 2:e202PubMedCentralPubMedGoogle Scholar
  71. 71.
    Koodie L, Ramakrishnan S, Roy S (2010) Morphine suppresses tumor angiogenesis through a HIF-1alpha/p38MAPK pathway. Am J Pathol 177:984–997PubMedCentralPubMedGoogle Scholar
  72. 72.
    Krog J, Hokland M, Ahlburg P et al (2002) Lipid solubility- and concentration-dependent attenuation of in vitro natural killer cell cytotoxicity by local anesthetics. Acta Anaesthesiol Scand 46:875–881PubMedGoogle Scholar
  73. 73.
    Kulp SK, Yang YT, Hung CC et al (2004) 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444–1451PubMedGoogle Scholar
  74. 74.
    Kundu N, Walser TC, Ma X et al (2005) Cyclooxygenase inhibitors modulate NK activities that control metastatic disease. Cancer Immunol Immunother 54:981–987PubMedGoogle Scholar
  75. 75.
    Kurosawa S (2012) Anesthesia in patients with cancer disorders. Curr Opin Anaesthesiol 25:376–384PubMedGoogle Scholar
  76. 76.
    Kushida A, Inada T, Shingu K (2007) Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol 29:477–486PubMedGoogle Scholar
  77. 77.
    Kutza J, Gratz I, Afshar M et al (1997) The effects of general anesthesia and surgery on basal and interferon stimulated natural killer cell activity of humans. Anesth Analg 85:918–923PubMedGoogle Scholar
  78. 78.
    Kvolik S, Dobrosevic B, Marczi S et al (2009) Different apoptosis ratios and gene expressions in two human cell lines after sevoflurane anaesthesia. Acta Anaesthesiol Scand 53:1192–1199PubMedGoogle Scholar
  79. 79.
    Kwak YE, Jeon NK, Kim J et al (2007) The cyclooxygenase-2 selective inhibitor celecoxib suppresses proliferation and invasiveness in the human oral squamous carcinoma. Ann N Y Acad Sci 1095:99–112PubMedGoogle Scholar
  80. 80.
    Lacassie HJ, Cartagena J, Branes J et al (2013) The relationship between neuraxial anesthesia and advanced ovarian cancer-related outcomes in the Chilean population. Anesth Analg 117:653–660PubMedGoogle Scholar
  81. 81.
    Laschke MW, Elitzsch A, Scheuer C et al (2007) Selective cyclo-oxygenase-2 inhibition induces regression of autologous endometrial grafts by down-regulation of vascular endothelial growth factor-mediated angiogenesis and stimulation of caspase-3-dependent apoptosis. Fertil Steril 87:163–171PubMedGoogle Scholar
  82. 82.
    Lazarczyk M, Matyja E, Lipkowski AW (2010) A comparative study of morphine stimulation and biphalin inhibition of human glioblastoma T98G cell proliferation in vitro. Peptides 31:1606–1612PubMedGoogle Scholar
  83. 83.
    Lee ST, Wu TT, Yu PY et al (2009) Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 102:80–89PubMedGoogle Scholar
  84. 84.
    Leo S, Nuydens R, Meert TF (2009) Opioid-induced proliferation of vascular endothelial cells. J Pain Res 2:59–66PubMedCentralPubMedGoogle Scholar
  85. 85.
    Li Q, Zhang L, Han Y et al (2012) Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother 66:52–56PubMedGoogle Scholar
  86. 86.
    Li W, Xu RJ, Lin ZY et al (2009) Effects of a cyclooxygenase-1-selective inhibitor in a mouse model of ovarian cancer, administered alone or in combination with ibuprofen, a nonselective cyclooxygenase inhibitor. Med Oncol 26:170–177PubMedGoogle Scholar
  87. 87.
    Li WZ, Huo QJ, Wang XY et al (2010) Inhibitive effect of celecoxib on the adhesion and invasion of human tongue squamous carcinoma cells to extracellular matrix via down regulation of MMP-2 expression. Prostaglandins Other Lipid Mediat 93:113–119PubMedGoogle Scholar
  88. 88.
    Liang H, Gu M, Yang C et al (2012) Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth 26:381–392PubMedGoogle Scholar
  89. 89.
    Liang H, Gu MN, Yang CX et al (2011) Sevoflurane inhibits proliferation, induces apoptosis, and blocks cell cycle progression of lung carcinoma cells. Asian Pac J Cancer Prev 12:3415–3420PubMedGoogle Scholar
  90. 90.
    Lin L, Liu C, Tan H et al (2011) Anaesthetic technique may affect prognosis for ovarian serous adenocarcinoma: a retrospective analysis. Br J Anaesth 106:814–822PubMedGoogle Scholar
  91. 91.
    Lin X, Li Q, Wang YJ et al (2007) Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kappaB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem J 406:215–221PubMedCentralPubMedGoogle Scholar
  92. 92.
    Lin X, Wang YJ, Li Q et al (2009) Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J 276:2022–2036PubMedGoogle Scholar
  93. 93.
    Lirk P, Berger R, Hollmann MW et al (2012) Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 109:200–207PubMedGoogle Scholar
  94. 94.
    Liu X, Yue P, Zhou Z et al (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96:1769–1780PubMedGoogle Scholar
  95. 95.
    Lloyd FP Jr, Slivova V, Valachovicova T et al (2003) Aspirin inhibits highly invasive prostate cancer cells. Int J Oncol 23:1277–1283PubMedGoogle Scholar
  96. 96.
    Lonnroth C, Andersson M, Arvidsson A et al (2008) Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun 8:5PubMedCentralPubMedGoogle Scholar
  97. 97.
    Loveridge CJ, Macdonald AD, Thoms HC et al (2008) The proapoptotic effects of sulindac, sulindac sulfone and indomethacin are mediated by nucleolar translocation of the RelA(p65) subunit of NF-kappaB. Oncogene 27:2648–2655PubMedGoogle Scholar
  98. 98.
    Macanas-Pirard P, Yaacob NS, Lee PC et al (2005) Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells. J Pharmacol Exp Ther 313:780–789PubMedGoogle Scholar
  99. 99.
    Maira MS, Pearson MA, Fabbro D et al (2007) 7.01 – cancer biology. In: Taylor JB, Triggle DJ (Hrsg) Comprehensive medicinal chemistry II. Elsevier, Oxford, S 1–31Google Scholar
  100. 100.
    Manov I, Bashenko Y, Eliaz-Wolkowicz A et al (2007) High-dose acetaminophen inhibits the lethal effect of doxorubicin in HepG2 cells: the role of P-glycoprotein and mitogen-activated protein kinase p44/42 pathway. J Pharmacol Exp Ther 322:1013–1022PubMedGoogle Scholar
  101. 101.
    Manov I, Bashenko Y, Hirsh M et al (2006) Involvement of the multidrug resistance P-glycoprotein in acetaminophen-induced toxicity in hepatoma-derived HepG2 and Hep3B cells. Basic Clin Pharmacol Toxicol 99:213–224PubMedGoogle Scholar
  102. 102.
    Martinsson T (1999) Ropivacaine inhibits serum-induced proliferation of colon adenocarcinoma cells in vitro. J Pharmacol Exp Ther 288:660–664PubMedGoogle Scholar
  103. 103.
    Mathew B, Lennon FE, Siegler J et al (2011) The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation. Anesth Analg 112:558–567PubMedGoogle Scholar
  104. 104.
    Mattia A, Coluzzi F (2009) What anesthesiologists should know about paracetamol (acetaminophen). Minerva Anestesiol 75:644–653PubMedGoogle Scholar
  105. 105.
    Melamed R, Bar-Yosef S, Shakhar G et al (2003) Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 97:1331–1339PubMedGoogle Scholar
  106. 106.
    Merquiol F, Montelimard AS, Nourissat A et al (2013) Cervical epidural anesthesia is associated with increased cancer-free survival in laryngeal and hypopharyngeal cancer surgery: a retrospective propensity-matched analysis. Reg Anesth Pain Med 38:398–402PubMedGoogle Scholar
  107. 107.
    Miao Y, Zhang Y, Wan H et al (2010) GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed Pharmacother 64:583–588PubMedGoogle Scholar
  108. 108.
    Moudgil GC, Singal DP (1997) Halothane and isoflurane enhance melanoma tumour metastasis in mice. Can J Anaesth 44:90–94PubMedGoogle Scholar
  109. 109.
    Muller-Edenborn B, Roth-Z’graggen B, Bartnicka K et al (2012) Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology 117:293–301PubMedGoogle Scholar
  110. 110.
    Myles PS, Peyton P, Silbert B et al (2011) Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial. BMJ 342:d1491PubMedGoogle Scholar
  111. 111.
    Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V. (2012) S3-Leitlinie Brustkrebs, Langversion 3.0. http://www.awmf.org/uploads/tx_szleitlinien/032-045OL_l_S3__Brustkrebs_Mammakarzinom_Diagnostik_Therapie_Nachsorge_2012-07.pdfGoogle Scholar
  112. 112.
    Leitlinienprogramm Onkologie der AWMF, Deutschen Krebsgesellschaft e.V. und Deutschen Krebshilfe e.V. (2013) S3-Leitlinie exokrines Pankreaskarzinom, Langversion 1.0. http://www.awmf.org/uploads/tx_szleitlinien/032-010OLl_S3_Exokrines_Pankreaskarzinom_21112013.pdfGoogle Scholar
  113. 113.
    Palayoor ST, Tofilon PJ, Coleman CN (2003) Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1alpha and HIF-2alpha in prostate cancer cells. Clin Cancer Res 9:3150–3157PubMedGoogle Scholar
  114. 114.
    Patel MI, Subbaramaiah K, Du B et al (2005) Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res 11:1999–2007PubMedGoogle Scholar
  115. 115.
    Perez-Castro R, Patel S, Garavito-Aguilar ZV et al (2009) Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg 108:997–1007PubMedGoogle Scholar
  116. 116.
    Piegeler T, Votta-Velis EG, Liu G et al (2012) Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 117:548–559PubMedCentralPubMedGoogle Scholar
  117. 117.
    Qin Y, Li L, Chen J et al (2012) Fentanyl inhibits progression of human gastric cancer MGC-803 cells by NF-kappaB downregulation and PTEN upregulation in vitro. Oncol Res 20:61–69PubMedGoogle Scholar
  118. 118.
    Ragel BT, Jensen RL, Gillespie DL et al (2007) Celecoxib inhibits meningioma tumor growth in a mouse xenograft model. Cancer 109:588–597PubMedGoogle Scholar
  119. 119.
    Sacerdote P, Bianchi M, Gaspani L et al (2000) The effects of tramadol and morphine on immune responses and pain after surgery in cancer patients. Anesth Analg 90:1411–1414PubMedGoogle Scholar
  120. 120.
    Sakaguchi M, Kuroda Y, Hirose M (2006) The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor. Anesth Analg 102:1103–1107PubMedGoogle Scholar
  121. 121.
    Santander S, Cebrian C, Esquivias P et al (2012) Cyclooxygenase inhibitors decrease the growth and induce regression of human esophageal adenocarcinoma xenografts in nude mice. Int J Oncol 40:527–534PubMedGoogle Scholar
  122. 122.
    Sareddy GR, Geeviman K, Ramulu C et al (2012) The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-kappaB pathway. J Neurooncol 106:99–109PubMedGoogle Scholar
  123. 123.
    Schonberg SA, Skorpen F (1997) Paracetamol counteracts docosahexaenoic acid-induced growth inhibition of A-427 lung carcinoma cells and enhances tumor cell proliferation in vitro. Anticancer Res 17:2443–2448PubMedGoogle Scholar
  124. 124.
    Singh R, Cadeddu RP, Frobel J et al (2011) The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis 16:889–901PubMedGoogle Scholar
  125. 125.
    Snyder GL, Greenberg S (2010) Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth 105:106–115PubMedGoogle Scholar
  126. 126.
    Sogaard M, Thomsen RW, Bossen KS et al (2013) The impact of comorbidity on cancer survival: a review. Clin Epidemiol 5:3–29PubMedCentralPubMedGoogle Scholar
  127. 127.
    Soo RA, Wu J, Aggarwal A et al (2006) Celecoxib reduces microvessel density in patients treated with nasopharyngeal carcinoma and induces changes in gene expression. Ann Oncol 17:1625–1630PubMedGoogle Scholar
  128. 128.
    Tada M, Imazeki F, Fukai K et al (2007) Procaine inhibits the proliferation and DNA methylation in human hepatoma cells. Hepatol Int 1:355–364PubMedCentralPubMedGoogle Scholar
  129. 129.
    Takagi S, Kitagawa S, Oshimi K et al (1983) Effect of local anaesthetics on human natural killer cell activity. Clin Exp Immunol 53:477–481PubMedCentralPubMedGoogle Scholar
  130. 130.
    Takehara M, Hoshino T, Namba T et al (2011) Acetaminophen-induced differentiation of human breast cancer stem cells and inhibition of tumor xenograft growth in mice. Biochem Pharmacol 81:1124–1135PubMedGoogle Scholar
  131. 131.
    Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedGoogle Scholar
  132. 132.
    Tegeder I, Grosch S, Schmidtko A et al (2003) G protein-independent G1 cell cycle block and apoptosis with morphine in adenocarcinoma cells: involvement of p53 phosphorylation. Cancer Res 63:1846–1852PubMedGoogle Scholar
  133. 133.
    Tsui BC, Rashiq S, Schopflocher D et al (2010) Epidural anesthesia and cancer recurrence rates after radical prostatectomy. Can J Anaesth 57:107–112PubMedGoogle Scholar
  134. 134.
    Ustun F, Durmus-Altun G, Altaner S et al (2011) Evaluation of morphine effect on tumour angiogenesis in mouse breast tumour model, EATC. Med Oncol 28:1264–1272PubMedGoogle Scholar
  135. 135.
    Vassou D, Notas G, Hatzoglou A et al (2011) Opioids increase bladder cancer cell migration via bradykinin B2 receptors. Int J Oncol 39:697–707PubMedGoogle Scholar
  136. 136.
    Villar-Garea A, Fraga MF, Espada J et al (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63:4984–4989PubMedGoogle Scholar
  137. 137.
    Wang HM, Zhang GY (2004) Experimental study of the inhibitory effect of indomethacin on the growth and angiogenesis of human colon cancer xenografts. Di Yi Jun Da Xue Xue Bao 24:184–187Google Scholar
  138. 138.
    Wang HM, Zhang GY (2005) Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo. World J Gastroenterol 11:340–343PubMedGoogle Scholar
  139. 139.
    Werdehausen R, Braun S, Essmann F et al (2007) Lidocaine induces apoptosis via the mitochondrial pathway independently of death receptor signaling. Anesthesiology 107:136–143PubMedGoogle Scholar
  140. 140.
    Werdehausen R, Braun S, Fazeli S et al (2012) Lipophilicity but not stereospecificity is a major determinant of local anaesthetic-induced cytotoxicity in human T-lymphoma cells. Eur J Anaesthesiol 29:35–41PubMedGoogle Scholar
  141. 141.
    Werdehausen R, Fazeli S, Braun S et al (2009) Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. Br J Anaesth 103:711–718PubMedGoogle Scholar
  142. 142.
    Wiedemann D, Muhlnickel B, Staroske E et al (2000) Ropivacaine plasma concentrations during 120-hour epidural infusion. Br J Anaesth 85:830–835PubMedGoogle Scholar
  143. 143.
    Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87PubMedCentralPubMedGoogle Scholar
  144. 144.
    Wu GJ, Chen WF, Hung HC et al (2011) Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection. Brain Res 1384:42–50PubMedGoogle Scholar
  145. 145.
    Wu KC, Yang ST, Hsia TC et al (2012) Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer Res 32:4833–4842PubMedGoogle Scholar
  146. 146.
    Yeager MP, Procopio MA, Deleo JA et al (2002) Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD16(+) lymphocytes in humans. Anesth Analg 94:94–99PubMedGoogle Scholar
  147. 147.
    Yin J, Liu B, Li B et al (2011) The cyclooxygenase-2 inhibitor celecoxib attenuates hepatocellular carcinoma growth and c-Met expression in an orthotopic mouse model. Oncol Res 19:131–139PubMedGoogle Scholar
  148. 148.
    Yoon JR, Whipple RA, Balzer EM et al (2011) Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells. Breast Cancer Res Treat 129:691–701PubMedGoogle Scholar
  149. 149.
    Yoshida A, Tokuyama S, Iwamura T et al (2000) Opioid analgesic-induced apoptosis and caspase-independent cell death in human lung carcinoma A549 cells. Int J Mol Med 6:329–335PubMedGoogle Scholar
  150. 150.
    Yoshinaka R, Shibata MA, Morimoto J et al (2006) COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res 26:4245–4254PubMedGoogle Scholar
  151. 151.
    Zhang L, Wang N, Zhou S et al (2012) Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res 31:66PubMedCentralPubMedGoogle Scholar
  152. 152.
    Zhang M, Xu ZG, Shi Z et al (2011) Inhibitory effect of celecoxib in lung carcinoma by regulation of cyclooxygenase-2/cytosolic phospholipase A(2) and peroxisome proliferator-activated receptor gamma. Mol Cell Biochem 355:233–240PubMedGoogle Scholar
  153. 153.
    Zhou Y, Ran J, Tang C et al (2007) Effect of celecoxib on E-cadherin, VEGF, Microvessel density and apoptosis in gastric cancer. Cancer Biol Ther 6:269–275PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Bundscherer
    • 1
    Email author
  • M. Malsy
    • 1
  • D. Bitzinger
    • 1
  • B.M. Graf
    • 1
  1. 1.Klinik für AnästhesiologieUniversitätsklinikum RegensburgRegensburgDeutschland

Personalised recommendations