Der Anaesthesist

, Volume 63, Issue 4, pp 279–286 | Cite as

Aktuelle Konzepte der unterstützten Spontanatmung

Neue Wege zum differenzierten Weaning
Leitthema

Zusammenfassung

Die unterstützte Spontanatmung ist ein wichtiger Teil im Konzept der Entwöhnung von der Beatmung (Weaning), und zahlreiche Studien legen die besondere Bedeutung der frühzeitigen aktiven Beteiligung der muskulären Atempumpe an der erfolgreichen Extubation des (Langzeit-)beatmeten Patienten nahe. Auf der anderen Seite wurde durch atemphysiologische Untersuchungen auf das Problem „patient-ventilator interaction“ hingewiesen und aufgezeigt, dass es unter Anwendung der „klassischen“ kontrollierten und unterstützenden Beatmungsmodi häufig – klinisch unbemerkt – zu Asynchronien zwischen Patient und Ventilator kommt. Solche Asynchronien (ineffektives „triggering“, aktiver Abbruch der Inspiration, Überbeatmung und unzureichende Unterstützung) verschlechtern – in Abhängigkeit von Häufigkeit und Schweregrad – den pulmonalen Gasaustausch, verstärken den schädlichen Aspekt der Beatmung und können den erfolgreichen Verlauf beeinträchtigen. Unterstützende Beatmungstechniken [“proportional assist ventilation“ (PAV), „adaptive support ventilation“ (ASV), „neurally adjusted ventilatory support“ (NAVA)], die den Anspruch haben, durch elektronische oder physiologische Rückkopplungssysteme mit der Atemaktivität des Patienten eine bedarfsadaptierte Unterstützung anzubieten, wurden vor über 20 Jahren entwickelt und erfahren derzeit eine Wiederentdeckung. In kleineren Studien ist teilweise überzeugend gezeigt worden, dass solche innovativen Verfahren die Häufigkeit von Asynchronien reduzieren und die adaptierte Atemarbeit des Patienten verbessern. Obwohl große, randomisierte Studien mit Nachweis einer Outcome-Beeinflussung noch fehlen, ist anzunehmen, dass sich die Anwendung solcher adaptierter Beatmungsmodi im Weaning-Prozess durchsetzen wird.

Schlüsselwörter

Mechanische Beatmung „Proportional assist ventilation“ „Neurally adjusted ventilatory assist“ Mortalität Atemarbeit 

Current concepts of augmented spontaneous breathing

New modes of effort-adapted weaning

Abstract

The use of augmented spontaneous breathing is an important component in a bundle concept of weaning from mechanical ventilation as it was demonstrated that controlled ventilation with diaphragmatic underuse induces rapid muscle atrophy and impairs successful weaning. On the other hand spontaneous breathing is often associated with disturbed patient-ventilator interaction resulting in asynchrony (e.g. ineffective triggering, early termination of inspiration and overflow or underflow). It was shown that asynchrony can impair gas exchange, increase work of breathing and enhance deleterious aspects of mechanical ventilation. Concepts of assisted breathing, such as proportional assist ventilation (PAV), adaptive support ventilation (ASV) and neurally adjusted ventilatory support (NAVA), which are intended to increase effort-adapted spontaneous breathing by an electronic or physiological closed loop feedback system with the patient’s work of breathing were developed more than 20 years ago and are currently experiencing a renaissance. It was shown in some smaller clinical investigations that these newer modes are able to improve patient-ventilator interaction, to reduce the burden on respiratory muscles and to increase ventilation comfort. Although large randomized controlled studies are lacking, effort-adapted modes of augmented breathing will become a routine part in the management of weaning from mechanical ventilation.

Keywords

Mechanical ventilation Proportional assist ventilation Neurally adjusted ventilatory assist Mortality Work of breathing 

Literatur

  1. 1.
    Rouby JJ, Lu Q (2005) Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury. Crit Care 9:465–471PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Tremblay LN, Slutsky AS (2006) Ventilator induced lung injury: from bench to bedside. Intensive Care Med 32:24–33PubMedCrossRefGoogle Scholar
  3. 3.
    Puthucheary Z, Montgomery H, Moxham J et al (2010) Structure to function: muscle failure in critically ill patients. J Physiol 588:4641–4648PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Levien S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefGoogle Scholar
  5. 5.
    Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction – human studies confirm animal model findings! Crit Care 12:R116Google Scholar
  6. 6.
    Esteban A, Anzueto A, Frutos F et al (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day International study. JAMA 287:345–355PubMedCrossRefGoogle Scholar
  7. 7.
    Boles JM, Bion J, Connors A et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056PubMedCrossRefGoogle Scholar
  8. 8.
    Peñuelas O, Frutos-Vivar F, Fernandez C et al (2011) Characteristics and outcome of ventilated patients according to time of liberation from mechanical ventilation. Am J Respir Crit Care Med 184:430–437PubMedCrossRefGoogle Scholar
  9. 9.
    Epstein SK (2009) Weaning from ventilatory support. Curr Opin Crit Care 15:36–42PubMedCrossRefGoogle Scholar
  10. 10.
    Xirouchaki N, Kondili E, Vaporidi K et al (2008) Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 34:2026–2034PubMedCrossRefGoogle Scholar
  11. 11.
    Crocker C, Kinnear W (2008) Weaning from ventilation: does a care bundle approach work? Intensive Crit Care Nurs 24:180–186PubMedCrossRefGoogle Scholar
  12. 12.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedCrossRefGoogle Scholar
  13. 13.
    Girard TD, Kress JP, Fuchs BD et al (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled Trial): a randomised controlled trial. Lancet 371:126–134PubMedCrossRefGoogle Scholar
  14. 14.
    Blackwood B, Alderdice F, Burns K et al (2011) Use of weaning protocols fro reducing duration of mechanical ventilation in critically ill adult patients: Cochrane systematic review and meta-analysis. BMJ 342:c7237PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Branson RD (2011) Patient-ventilator interaction: the last 40 years. Respir Care 56:15–22PubMedCrossRefGoogle Scholar
  16. 16.
    Pierson D (2011) Patient-ventilator interaction. Respir Care 56:214–228PubMedCrossRefGoogle Scholar
  17. 17.
    Unrou M, MacIntyre N (2010) Evolving approaches to assessing and monitoring patient-ventilator interactions. Curr Opin Crit Care 16:261–268CrossRefGoogle Scholar
  18. 18.
    Georgopoulos D, Prinianakis G, Kondili E (2006) Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 32:34–47PubMedCrossRefGoogle Scholar
  19. 19.
    Epstein SK (2011) How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care 56:25–35PubMedCrossRefGoogle Scholar
  20. 20.
    Nava S, Bruschi C, Fracchia C et al (1997) Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Resp J 10:177–183CrossRefGoogle Scholar
  21. 21.
    Wit M de, Miller KB, Green DA et al (2009) Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 37:2740–2745PubMedCrossRefGoogle Scholar
  22. 22.
    Grasso S, Puntillo F, Mascia L et al (2000) Compensation for increase in respiratory workload during mechanical ventilation: pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med 161:819–826PubMedCrossRefGoogle Scholar
  23. 23.
    Younes M (1992) Proportional assist ventilation, a new approach to ventilatory support: theory. Am Rev Respir Dis 145:114–120PubMedCrossRefGoogle Scholar
  24. 24.
    Georgopoulos D, Plataki M, Prinianakis G et al (2007) Current status of proportional assist ventilation. Int J Intensive Care (August):19–26Google Scholar
  25. 25.
    Sinderby C, Navalesi P, Beck J et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436PubMedCrossRefGoogle Scholar
  26. 26.
    Moerer O, Barwing J, Quintel M (2008) „Neurally adjusted ventilatory assist“ (NAVA) – ein neuartiges assistiertes Spontanatmungsverfahren. Anaesthesist 57:998–1005PubMedCrossRefGoogle Scholar
  27. 27.
    Moerer O (2012) Effort-adapted modes of assisted breathing. Curr Opin Crit Care 18:61–69PubMedGoogle Scholar
  28. 28.
    Spahija J, Marchie M de, Albert M et al (2010) Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 38:518–526PubMedCrossRefGoogle Scholar
  29. 29.
    Campbell RS, Branson RD, Johannigman JA (2001) Adaptive support ventilation. Respir Care Clin N Am 7:425–440PubMedCrossRefGoogle Scholar
  30. 30.
    Dongelmans DA, Veelo DP, Paulus F et al (2009) Weaning automation with with adaptive support ventilation: a randomized controlled trial in cardiothoracic surgery patients. Anesth Analg 108:565–571PubMedCrossRefGoogle Scholar
  31. 31.
    Kirakli C, Ozdemir I, Ucar ZZ et al (2011) Adaptive support ventilation for faster weaning in COPD: a randomised controlled trial. Eur Respir J 38:774–780PubMedCrossRefGoogle Scholar
  32. 32.
    Petter AH, Chiolero RL, Cassina T et al (2003) Automatic „respirator/weaning“ with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management. Anesth Analg 97:1743–1750PubMedCrossRefGoogle Scholar
  33. 33.
    Bosma K, Ferreyra G, Ambrogio C et al (2007) Patient-ventilator interaction and sleep in mechanically ventilated patients: pressure support versus proportional assist ventilation. Crit Care Med 36:1048–1054CrossRefGoogle Scholar
  34. 34.
    Costa R, Spinazzola G, Cipriani F et al (2011) A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med 37:1494–1500PubMedCrossRefGoogle Scholar
  35. 35.
    Jaber S, Sebbane M, Verzilli D et al (2009) Adaptive support and pressure support ventilation behaviour in response to increased ventilatory demand. Anesthesiology 110:620–627PubMedCrossRefGoogle Scholar
  36. 36.
    Ranieri VM, Giuliani M, Mascia L et al (1996) Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol 81:426–436PubMedGoogle Scholar
  37. 37.
    Kacmarek R (2011) Proportional assist ventilation and neurally adjusted ventilatory assist. Resp Care 56:140–148CrossRefGoogle Scholar
  38. 38.
    Piquilloud L, Vigneaux L, Bialais E et al (2011) Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med 37:263–271PubMedCrossRefGoogle Scholar
  39. 39.
    Cammarota G, Olivieri C, Costa R et al (2011) Noninvasive ventilation through a helmet in postextubation hypoxemic patients: physiologic comparison between neurally adjusted ventilatory assist and pressure support ventilation. Intensive Care Med 37:1943–1950PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für AnästhesiologieUniversitätsklinikum RegensburgRegensburgDeutschland

Personalised recommendations