Der Anaesthesist

, Volume 62, Issue 2, pp 91–100 | Cite as

Neurotoxizität von Allgemeinanästhetika im Kindesalter

Hinterlässt Narkose Spuren beim Früh-, Neugeborenen und Kleinkind?
Leitthema

Zusammenfassung

Zahlreiche tierexperimentelle Untersuchungen zeigen, dass Anästhetika im unreifen Gehirn neurotoxisch wirken können, da sie Apoptose induzieren und die Neuro- sowie Synaptogenese beeinflussen. Im Tierexperiment hat dies erhebliche Auswirkungen auf die neurokognitiven Funktionen der Tiere im späteren Leben. Ob diese tierexperimentellen Ergebnisse auf den Menschen übertragen werden können, ist derzeit Gegenstand intensiver Forschung. In mehreren retrospektiven Untersuchungen konnte kein eindeutiger Zusammenhang zwischen einer Anästhesie im Früh-, Neugeborenen- oder Kleinkindalter und dem Auftreten von Lernstörungen oder Verhaltensauffälligkeiten gefunden werden. Zwei prospektive Studien (GAS und PANDA) sollen weiteren Einblick liefern und diese Frage möglichst klären. Wegen der großen Relevanz des Themas und um für die Problematik im Umgang mit den Eltern mehr Klarheit zu schaffen, haben der Wissenschaftliche Arbeitskreis für Kinderanästhesie und der Wissenschaftliche Arbeitskreis für Neuroanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) auf der Grundlage der derzeitigen Datenlage eine Stellungnahme verfasst ().

Schlüsselwörter

Neurone Neurodegeneration Gehirn Lernen Verhalten 

Neurotoxicity of general anesthetics in childhood

Does anesthesia leave its mark on premature babies, newborns and infants?

Abstract

Many animal experiments have shown that anesthetics can have a neurotoxic effect on immature brains because they induce apoptosis and influence neurogenesis and synaptogenesis. In animal experiments this has substantial implications for the neurocognitive functions of animals in later life. Whether these results of animal experiments can be transferred to humans is currently the subject of intensive research. In several retrospective studies no clear association between anesthesia in premature babies, newborns or infants and the occurrence of learning disorders or behavioral problems could be found. The prospective studies GAS and PANDA are designed to obtain a deeper insight and if possible to clarify this problem. Because of the high relevance of this topic and in order to achieve more clarity for this problem when dealing with parents, the scientific working group for neuroanesthesia and pediatric anesthesia of the German Society for Anesthesiology and Intensive Care Medicine (DGAI) has formulated a position document on the basis of currently available data.

Keywords

Neurons Neurodegeneration Brain Learning Behavior 

Notes

Interessenkonflikt

Die korrespondierende Autorin weist für sich und ihre Koautoren auf folgende Beziehungen hin: K.E. hält Vorträge für Abbott und einmalige Teilnahme am Advisory Board von Fresenius.

Literatur

  1. 1.
    Cowan WM (1979) The development of the brain. Sci Am 241:113–133PubMedCrossRefGoogle Scholar
  2. 2.
    LaMantia AS, Rakic P (1994) Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey. J Comp Neurol 340:328–336PubMedCrossRefGoogle Scholar
  3. 3.
    Bourgeois JP (1997) Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. Acta Paediatr Suppl 422:27–33PubMedCrossRefGoogle Scholar
  4. 4.
    Sowell ER, Peterson BS, Thompson PM et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRefGoogle Scholar
  5. 5.
    Nguyen L, Rigo JM, Rocher V et al (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 305:187–202PubMedCrossRefGoogle Scholar
  6. 6.
    Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190(Suppl 1):S8–S21PubMedCrossRefGoogle Scholar
  7. 7.
    Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83PubMedCrossRefGoogle Scholar
  8. 8.
    Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46PubMedCrossRefGoogle Scholar
  9. 9.
    Dobbing J, Sands J (1978) Head circumference, biparietal diameter and brain growth in fetal and postnatal life. Early Hum Dev 2:81–87PubMedCrossRefGoogle Scholar
  10. 10.
    Petit TL, LeBoutillier JC, Gregorio A et al (1988) The pattern of dendritic development in the cerebral cortex of the rat. Brain Res 469:209–219PubMedGoogle Scholar
  11. 11.
    Slikker W Jr, Zou X, Hotchkiss CE et al (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–158PubMedCrossRefGoogle Scholar
  12. 12.
    Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384PubMedCrossRefGoogle Scholar
  13. 13.
    Hayashi H, Dikkes P, Soriano SG (2002) Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatr Anaesth 12:770–774PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson SA, Young C, Olney JW (2008) Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. J Neurosurg Anesthesiol 20:21–28PubMedCrossRefGoogle Scholar
  15. 15.
    Stratmann G, Sall JW, Eger EI 2nd et al (2009) Increasing the duration of isoflurane anesthesia decreases the minimum alveolar anesthetic concentration in 7-day-old but not in 60-day-old rats. Anesth Analg 109:801–806PubMedCrossRefGoogle Scholar
  16. 16.
    Slikker W Jr, Paule MG, Wright LK et al (2007) Systems biology approaches for toxicology. J Appl Toxicol 27:201–217PubMedCrossRefGoogle Scholar
  17. 17.
    Scallet AC, Schmued LC, Slikker W Jr et al (2004) Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci 81:364–370PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu C, Gao J, Karlsson N et al (2010) Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 30:1017–1030PubMedCrossRefGoogle Scholar
  19. 19.
    Stratmann G, May LD, Sall JW et al (2009) Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats. Anesthesiology 110:849–861PubMedCrossRefGoogle Scholar
  20. 20.
    Zou X, Patterson TA, Divine RL et al (2009) Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci 27:727–731PubMedCrossRefGoogle Scholar
  21. 21.
    Sinner B, Friedrich O, Zink W et al (2011) The toxic effects of s(+)-ketamine on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+ oscillations. Anesth Analg 113:1161–1169PubMedCrossRefGoogle Scholar
  22. 22.
    Vutskits L, Gascon E, Tassonyi E et al (2005) Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology 102:970–976PubMedCrossRefGoogle Scholar
  23. 23.
    Young C, Jevtovic-Todorovic V, Qin YQ et al (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146:189–197PubMedCrossRefGoogle Scholar
  24. 24.
    Viberg H, Ponten E, Eriksson P et al (2008) Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology 249:153–159PubMedCrossRefGoogle Scholar
  25. 25.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882PubMedGoogle Scholar
  26. 26.
    Yon JH, Daniel-Johnson J, Carter LB et al (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827PubMedCrossRefGoogle Scholar
  27. 27.
    Soriano SG, Liu Q, Li J et al (2010) Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 112:1155–1163PubMedCrossRefGoogle Scholar
  28. 28.
    Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372PubMedCrossRefGoogle Scholar
  29. 29.
    Briner A, Nikonenko I, De Roo M et al (2011) Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 115:282–293PubMedCrossRefGoogle Scholar
  30. 30.
    Corner MA, Baker RE, Pelt J van et al (2005) Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro. Prog Brain Res 147:231–248PubMedCrossRefGoogle Scholar
  31. 31.
    Edwards DA, Shah HP, Cao W et al (2010) Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology 112:567–575PubMedCrossRefGoogle Scholar
  32. 32.
    Lemkuil BP, Head BP, Pearn ML et al (2011) Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. Anesthesiology 114:49–57PubMedCrossRefGoogle Scholar
  33. 33.
    Head BP, Patel HH, Niesman IR et al (2009) Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 110:813–825PubMedCrossRefGoogle Scholar
  34. 34.
    Pearn ML, Hu Y, Niesman IR et al (2012) Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116:352–361PubMedCrossRefGoogle Scholar
  35. 35.
    Briner A, De Roo M, Dayer A et al (2010) Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology 112:546–556PubMedCrossRefGoogle Scholar
  36. 36.
    Vutskits L, Gascon E, Tassonyi E et al (2006) Effect of ketamine on dendritic arbor development and survival of immature GABAergic neurons in vitro. Toxicol Sci 91:540–549PubMedCrossRefGoogle Scholar
  37. 37.
    Vutskits L, Gascon E, Potter G et al (2007) Low concentrations of ketamine initiate dendritic atrophy of differentiated GABAergic neurons in culture. Toxicology 234:216–226PubMedCrossRefGoogle Scholar
  38. 38.
    Sinner B, Friedrich O, Zausig Y et al (2011) Toxic effects of midazolam on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+-oscillations. Toxicology 290:96–101PubMedCrossRefGoogle Scholar
  39. 39.
    De Roo M, Klauser P, Briner A et al (2009) Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS ONE e7043Google Scholar
  40. 40.
    Ikonomidou C, Turski L (2010) Antiepileptic drugs and brain development. Epilepsy Res 88:11–22PubMedCrossRefGoogle Scholar
  41. 41.
    Stargatt R, Davidson AJ, Huang GH et al (2006) A cohort study of the incidence and risk factors for negative behavior changes in children after general anesthesia. Paediatr Anaesth 16:846–859PubMedGoogle Scholar
  42. 42.
    Sprung J, Flick RP, Wilder RT et al (2009) Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 111:302–310PubMedCrossRefGoogle Scholar
  43. 43.
    Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804PubMedCrossRefGoogle Scholar
  44. 44.
    DiMaggio C, Sun LS, Kakavouli A et al (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21:286–291PubMedCrossRefGoogle Scholar
  45. 45.
    Bartels M, Althoff RR, Boomsma DI (2009) Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin Res Hum Genet 12:246–253PubMedCrossRefGoogle Scholar
  46. 46.
    Hansen TG, Pedersen JK, Henneberg SW et al (2011) Academic performance in adolescence after inguinal hernia repair in infancy: a nationwide cohort study. Anesthesiology 114:1076–1085PubMedCrossRefGoogle Scholar
  47. 47.
    Istaphanous GK, Howard J, Nan X et al (2011) Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology 114:578–587PubMedCrossRefGoogle Scholar
  48. 48.
    Liu JR, Liu Q, Li J et al (2012) Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology 117:64–71PubMedCrossRefGoogle Scholar
  49. 49.
    Shih J, May LD, Gonzalez HE et al (2012) Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 116:586–602PubMedCrossRefGoogle Scholar
  50. 50.
    Kain ZN, Mayes LC, Wang SM et al (1999) Postoperative behavioral outcomes in children: effects of sedative premedication. Anesthesiology 90:758–765PubMedCrossRefGoogle Scholar
  51. 51.
    Kain ZN, Caldwell-Andrews AA, Maranets I et al (2004) Preoperative anxiety and emergence delirium and postoperative maladaptive behaviors. Anesth Analg 99:1648–1654PubMedCrossRefGoogle Scholar
  52. 52.
    Taddio A, Katz J, Ilersich AL et al (1997) Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 349:599–603PubMedCrossRefGoogle Scholar
  53. 53.
    Anand KJ, Coskun V, Thrivikraman KV et al (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 66:627–637PubMedCrossRefGoogle Scholar
  54. 54.
    Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662PubMedCrossRefGoogle Scholar
  55. 55.
    Ruda MA, Ling QD, Hohmann AG et al (2000) Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 289:628–631PubMedCrossRefGoogle Scholar
  56. 56.
    Yon JH, Carter LB, Reiter RJ et al (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 21:522–530PubMedCrossRefGoogle Scholar
  57. 57.
    Sanders RD, Xu J, Shu Y et al (2009) Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology 110:1077–1085PubMedCrossRefGoogle Scholar
  58. 58.
    Shu Y, Patel SM, Pac-Soo C et al (2010) Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology 113:360–368PubMedCrossRefGoogle Scholar
  59. 59.
    Straiko MM, Young C, Cattano D et al (2009) Lithium protects against anesthesia-induced developmental neuroapoptosis. Anesthesiology 110:862–868PubMedCrossRefGoogle Scholar
  60. 60.
    Nilsen J, Brinton RD (2004) Mitochondria as therapeutic targets of estrogen action in the central nervous system. Curr Drug Targets CNS Neurol Disord 3:297–313PubMedCrossRefGoogle Scholar
  61. 61.
    Ma D, Williamson P, Januszewski A et al (2007) Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 106:746–753PubMedCrossRefGoogle Scholar
  62. 62.
    Rudin M, Ben-Abraham R, Gazit V et al (2005) Single-dose ketamine administration induces apoptosis in neonatal mouse brain. J Basic Clin Physiol Pharmacol 16:231–243PubMedCrossRefGoogle Scholar
  63. 63.
    Ikonomidou C, Bittigau P, Ishimaru MJ et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060PubMedCrossRefGoogle Scholar
  64. 64.
    Anand KJ, Garg S, Rovnaghi CR et al (2007) Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res 62:283–290PubMedCrossRefGoogle Scholar
  65. 65.
    Fredriksson A, Archer T, Alm H et al (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376PubMedCrossRefGoogle Scholar
  66. 66.
    Becke K, Schreiber M, Philippi-Hähne C et al (2012) Anästhetika-induzierte Neurotoxizität. Gemeinsame Stellungnahme der Wissenschaftlichen Arbeitskreise Kinderanästhesie und Neuroanästhesie der DGAI. Anaesth Intensivmed 53:706–710Google Scholar
  67. 67.
    Paule MG, Li M, Allen RR et al (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–230PubMedCrossRefGoogle Scholar
  68. 68.
    Green SM, Clark R, Hostetler MA et al (1999) Inadvertent ketamine overdose in children: clinical manifestations and outcome. Ann Emerg Med 34:492–497PubMedCrossRefGoogle Scholar
  69. 69.
    Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74PubMedCrossRefGoogle Scholar
  70. 70.
    Bittigau P, Sifringer M, Genz K et al (2002) Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci U S A 99:15089–15094PubMedCrossRefGoogle Scholar
  71. 71.
    Marquez-Orozco MC, Gazca-Ramirez MV, Fuente-Juarez G de la et al (2009) Midazolam administered to 8-day-old mouse pups for three weeks induces cerebellar cortex alterations. Proc West Pharmacol Soc 52:109–111PubMedGoogle Scholar
  72. 72.
    Holmes GL, Harden C, Liporace J et al (2007) Postnatal concerns in children born to women with epilepsy. Epilepsy Behav 11:270–276PubMedCrossRefGoogle Scholar
  73. 73.
    Laegreid L, Hagberg G, Lundberg A (1992) Neurodevelopment in late infancy after prenatal exposure to benzodiazepines–a prospective study. Neuropediatrics 23:60–67PubMedCrossRefGoogle Scholar
  74. 74.
    Fredriksson A, Ponten E, Gordh T et al (2007) Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107:427–436PubMedCrossRefGoogle Scholar
  75. 75.
    Bergman I, Steeves M, Burckart G et al (1991) Reversible neurologic abnormalities associated with prolonged intravenous midazolam and fentanyl administration. J Pediatr 119:644–649PubMedCrossRefGoogle Scholar
  76. 76.
    Hughes J, Gill A, Leach HJ et al (1994) A prospective study of the adverse effects of midazolam on withdrawal in critically ill children. Acta Paediatr 83:1194–1199PubMedCrossRefGoogle Scholar
  77. 77.
    Fonsmark L, Rasmussen YH, Carl P (1999) Occurrence of withdrawal in critically ill sedated children. Crit Care Med 27:196–199PubMedCrossRefGoogle Scholar
  78. 78.
    Franck LS, Naughton I, Winter I (2004) Opioid and benzodiazepine withdrawal symptoms in paediatric intensive care patients. Intensive Crit Care Nurs 20:344–351PubMedCrossRefGoogle Scholar
  79. 79.
    Khan RB, Schmidt JE, Tamburro RF (2005) A reversible generalized movement disorder in critically ill children with cancer. Neurocrit Care 3:146–149PubMedCrossRefGoogle Scholar
  80. 80.
    Dominguez KD, Crowley MR, Coleman DM et al (2006) Withdrawal from lorazepam in critically ill children. Ann Pharmacother 40:1035–1039PubMedCrossRefGoogle Scholar
  81. 81.
    Al-Jahdari WS, Saito S, Nakano T et al (2006) Propofol induces growth cone collapse and neurite retractions in chick explant culture. Can J Anaesth 53:1078–1085PubMedCrossRefGoogle Scholar
  82. 82.
    Honegger P, Matthieu JM (1996) Selective toxicity of the general anesthetic propofol for GABAergic neurons in rat brain cell cultures. J Neurosci Res 45:631–636PubMedCrossRefGoogle Scholar
  83. 83.
    Spahr-Schopfer I, Vutskits L, Toni N et al (2000) Differential neurotoxic effects of propofol on dissociated cortical cells and organotypic hippocampal cultures. Anesthesiology 92:1408–1417PubMedCrossRefGoogle Scholar
  84. 84.
    Macrae D, James IG (1992) Propofol sedation of children. Anaesthesia 47:811PubMedCrossRefGoogle Scholar
  85. 85.
    Yanay O, Brogan TV, Martin LD (2004) Continuous pentobarbital infusion in children is associated with high rates of complications. J Crit Care 19:174–178PubMedCrossRefGoogle Scholar
  86. 86.
    Tobias JD, Deshpande JK, Pietsch JB et al (1995) Pentobarbital sedation for patients in the pediatric intensive care unit. South Med J 88:290–294PubMedCrossRefGoogle Scholar
  87. 87.
    Dessens AB, Cohen-Kettenis PT, Mellenbergh GJ et al (2000) Association of prenatal phenobarbital and phenytoin exposure with small head size at birth and with learning problems. Acta Paediatr 89:533–541PubMedCrossRefGoogle Scholar
  88. 88.
    Farwell JR, Lee YJ, Hirtz DG et al (1990) Phenobarbital for febrile seizures–effects on intelligence and on seizure recurrence. N Engl J Med 322:364–369PubMedCrossRefGoogle Scholar
  89. 89.
    Gerstner T, Demirakca S, Demirakca T et al (2005) Psychomotorische Entwicklung nach neonataler Phenobarbitaltherapie. Monatsschr Kinderheilkd 153:1174–1181CrossRefGoogle Scholar
  90. 90.
    Solt K, Forman SA (2007) Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol 20:300–306PubMedCrossRefGoogle Scholar
  91. 91.
    Quimby KL, Aschkenase LJ, Bowman RE et al (1974) Enduring learning deficits and cerebral synaptic malformation from exposure to 10 parts of halothane per million. Science 185:625–627PubMedCrossRefGoogle Scholar
  92. 92.
    Uemura E, Ireland WP, Levin ED et al (1985) Effects of halothane on the development of rat brain: a golgi study of dendritic growth. Exp Neurol 89:503–519PubMedCrossRefGoogle Scholar
  93. 93.
    Uemura E, Levin ED, Bowman RE (1985) Effects of halothane on synaptogenesis and learning behavior in rats. Exp Neurol 89:520–529PubMedCrossRefGoogle Scholar
  94. 94.
    Meyers EF, Muravchick S (1977) Anesthesia induction technics in pediatric patients: a controlled study of behavioral consequences. Anesth Analg 56:538–542PubMedCrossRefGoogle Scholar
  95. 95.
    Keaney A, Diviney D, Harte S et al (2004) Postoperative behavioral changes following anesthesia with sevoflurane. Paediatr Anaesth 14:866–870PubMedCrossRefGoogle Scholar
  96. 96.
    Kain ZN, Caldwell-Andrews AA, Weinberg ME et al (2005) Sevoflurane versus halothane: postoperative maladaptive behavioral changes: a randomized, controlled trial. Anesthesiology 102:720–726PubMedCrossRefGoogle Scholar
  97. 97.
    Kain ZN, Wang SM, Mayes LC et al (1999) Distress during the induction of anesthesia and postoperative behavioral outcomes. Anesth Analg 88:1042–1047PubMedGoogle Scholar
  98. 98.
    Kotiniemi LH, Ryhanen PT (1996) Behavioural changes and children’s memories after intravenous, inhalation and rectal induction of anaesthesia. Paediatr Anaesth 6:201–207PubMedCrossRefGoogle Scholar
  99. 99.
    Kotiniemi LH, Ryhanen PT, Moilanen IK (1997) Behavioural changes in children following day-case surgery: a 4-week follow-up of 551 children. Anaesthesia 52:970–976PubMedCrossRefGoogle Scholar
  100. 100.
    Arnold JH, Truog RD, Rice SA (1993) Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg 76:520–526PubMedCrossRefGoogle Scholar
  101. 101.
    Kelsall AW, Ross-Russell R, Herrick MJ (1994) Reversible neurologic dysfunction following isoflurane sedation in pediatric intensive care. Crit Care Med 22:1032–1034PubMedCrossRefGoogle Scholar
  102. 102.
    Constant I, Seeman R, Murat I (2005) Sevoflurane and epileptiform EEG changes. Paediatr Anaesth 15:266–274PubMedCrossRefGoogle Scholar
  103. 103.
    Modvig KM, Nielsen SF (1977) Psychological changes in children after anaesthesia: a comparison between halothane and ketamine. Acta Anaesthesiol Scand 21:541–544PubMedCrossRefGoogle Scholar
  104. 104.
    Zhao YL, Xiang Q, Shi QY et al (2011) GABAergic excitotoxicity injury of the immature hippocampal pyramidal neurons‘ exposure to isoflurane. Anesth Analg 113:1152–1160PubMedCrossRefGoogle Scholar
  105. 105.
    Kong FJ, Ma LL, Hu WW et al (2012) Fetal exposure to high isoflurane concentration induces postnatal memory and learning deficits in rats. Biochem Pharmacol 84:558–563PubMedCrossRefGoogle Scholar
  106. 106.
    Kodama M, Satoh Y, Otsubo Y et al (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115:979–991PubMedCrossRefGoogle Scholar
  107. 107.
    Hughes J, Leach HJ, Choonara I (1993) Hallucinations on withdrawal of isoflurane used as sedation. Acta Paediatr 82:885–886PubMedGoogle Scholar
  108. 108.
    Sackey PV, Martling CR, Radell PJ (2005) Three cases of PICU sedation with isoflurane delivered by the ‚AnaConDa’. Paediatr Anaesth 15:879–885PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik für AnästhesiologieUniversitätsklinikum RegensburgRegensburgDeutschland
  2. 2.Abteilung für Anästhesie und IntensivmedizinCnopf’sche Kinderklinik, Klinik HallerwieseNürnbergDeutschland
  3. 3.Klinik für AnaesthesiologieUniversitätsmedizin der Johannes-Gutenberg-UniversitätMainzDeutschland

Personalised recommendations