Der Anaesthesist

, Volume 62, Issue 3, pp 213–224 | Cite as

Umgang mit Massivblutungen und assoziierten perioperativen Gerinnungsstörungen

Handlungsempfehlung der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin
  • O. Grottke
  • T. Frietsch
  • M. Maas
  • H. Lier
  • R. Rossaint
Leitlinien und Empfehlungen

Zusammenfassung

Die massive Blutung mit hämorrhagischem Schock und begleitender Koagulopathie stellt ein lebensbedrohliches Krankheitsbild dar. Die Verhinderung der Exsanguination fulminant blutender Patienten erfordert die optimale, standardisierte und patientenorientierte Behandlung sowie eine enge interdisziplinäre Zusammenarbeit. Dabei können insbesondere die Einführung standardisierter Massivtransfusionsprotokolle und ein zielgerichtetes Gerinnungsmanagement zur Reduzierung sekundärer Folgeschäden beitragen. In der Helsinki-Deklaration zur Patientensicherheit der Europäischen Gesellschaft für Anästhesiologie (ESA, European Society of Anaesthesiology) wird die Einführung eines klinikspezifischen Protokolls zur Behandlung einer Massivblutung bereits ausdrücklich gefordert. Daher wurde mit der vorliegenden Handlungsempfehlung im Konsens mit der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) ein Algorithmus zur Behandlung von Patienten mit lebensbedrohlichen Blutungen erstellt, der an lokale Gegebenheiten und Ressourcen im Detail angepasst werden muss.

Schlüsselwörter

Trauma Bluttransfusion Koagulopathie „Damage-Control“-Chirurgie Reanimation 

Dealing with massive bleeding and associated perioperative coagulopathy

Recommendations for action of the German Society of Anaesthesiology and Intensive Care Medicine

Abstract

Massive bleeding with coagulopathy and hemorrhagic shock poses a potential threat to life in numerous clinical settings. Optimal treatment including the prevention of exsanguination necessitates a standardized and interdisciplinary approach. Several studies have shown the importance of massive transfusion protocols and standardized coagulation algorithms to improve survival of severely bleeding patients and to avoid secondary complications. Thus, the Helsinki declaration for patient safety in anesthesiology demands the implementation of clinical practice guidelines for the treatment of patients requiring massive transfusion. This paper introduces a standardized algorithm for the treatment of patients with massive bleeding which was developed in consensus with the German Society of Anaesthesiology and Intensive Care Medicine (DGAI).

Keywords

Trauma Blood transfusion Coagulopathy Damage control surgery Resuscitation 

Notes

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: O.G. erhielt Forschungsförderung von den Firmen Novo Nordisk, Biotest, Nycomed, CSL Behring und Honorare für Vorlesungen bzw. Beratertätigkeiten von den Firmen Bayer und Böhringer Ingelheim. T.F. Honorare und Aufwandsentschädigungen für Vorträge und Beraterfunktionen als auch im Rahmen von Studien von den Firmen Haemonetics, Sorin, CSL Behring und Novo Nordisk. H.L. erhielt Vortragshonorare und Reisekostenerstattungen von CSL Behring, Mitsubishi Pharma, Novo Nordisk und TEM International. M.M. berichtet keinen Interessenkonflikt. R.R. erhielt von den Firmen CSL Behring, Novo Nordisk, Bayer, Air Liquide Honorare für Vorlesungen und Beratertätigkeiten. Außerdem erhielt R.R. Forschungsförderung von den Firmen AGA-Linde, Air Liquide, Novo Nordisk, Eli Lilly und Glaxo Wellcome.

Literatur

  1. 1.
    Cotton BA, Au BK, Nunez TC et al (2009) Predefined massive transfusion protocols are associated with a reduction in organ failure and postinjury complications. J Trauma 66:4–48CrossRefGoogle Scholar
  2. 2.
    Cotton BA, Gunter OL, Isbell J et al (2008) Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma 64:1177–1182PubMedCrossRefGoogle Scholar
  3. 3.
    Dente CJ, Shaz BH, Nicholas JM et al (2009) Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian level I trauma center. J Trauma 66:1616–1624PubMedCrossRefGoogle Scholar
  4. 4.
    Mellin-Olsen J, Staender S, Whitaker DK, Smith AF (2010) The Helsinki declaration on patient safety in anaesthesiology. Eur J Anaesthesiol 27:592–597PubMedCrossRefGoogle Scholar
  5. 5.
    Levy J (2010) Antifibrinolytic therapy: new data and new concepts. Lancet 376:3–4PubMedCrossRefGoogle Scholar
  6. 6.
    Johansson P, Stensballe J (2010) Hemostatic resuscitation for massive bleeding: the paradigm of plasma and platelets – a review of current literature. Transfusion 50:701–710PubMedCrossRefGoogle Scholar
  7. 7.
    Rossaint R, Bouillon B, Cerny V et al; Task Force for Advanced Bleeding Care in Trauma (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:R52PubMedCrossRefGoogle Scholar
  8. 8.
    http://www.awmf.org/uploads/tx_szleitlinien/012019l_S3_Polytrauma_Schwerverletzten-Behandlung_2011–07_01.pdf. Zugegriffen: 06. Feb. 2012Google Scholar
  9. 9.
    http://www.bundesaerztekammer.de/downloads/Querschnittsleitlinie_Gesamtdokument-deutsch_07032011.pdf. Zugegriffen: 06. Feb. 2012Google Scholar
  10. 10.
    Nunez TC, Young PP, Holcomb JB, Cotton BA (2010) Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient. J Trauma 68:1498–1505PubMedCrossRefGoogle Scholar
  11. 11.
    O’Keeffe T, Refaai M, Tchorz K et al (2008) A massive transfusion protocol to decrease blood component use and costs. Arch Surg 143:686–690CrossRefGoogle Scholar
  12. 12.
    Van den Elsen M, Leenen LP, Kesecioglu J (2010) Hemodynamic support of the trauma patient. Curr Opin Anaesth 23:269–275CrossRefGoogle Scholar
  13. 13.
    Vincent JL, Dufaye P, Berre J et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11:449–451PubMedCrossRefGoogle Scholar
  14. 14.
    Davis JW, Parks SN, Kaups KL et al (1996) Admission base deficit predicts transfusion requirements and risk of complications. J Trauma 41:769–774PubMedCrossRefGoogle Scholar
  15. 15.
    Yücel N, Lefering R, Maegele M et al (2006) Trauma Associated Severe Hemorrhage (TASH)-Score: probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J Trauma 60:1228–1236PubMedCrossRefGoogle Scholar
  16. 16.
    Maegele M, Lefering R, Wafaisade A et al; Trauma Registry of Deutsche Gesellschaft für Unfallchirurgie (TR-DGU) (2011) Revalidation and update of the TASH-Score: a scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang 100:231–238PubMedCrossRefGoogle Scholar
  17. 17.
    Kozek-Langenecker SA (2010) Perioperative coagulation monitoring. Best Pract Res Clin Anaesthesiol 24:27–40PubMedCrossRefGoogle Scholar
  18. 18.
    Ganter MT, Hofer CK (2008) Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth Analg 106:1366–1375PubMedCrossRefGoogle Scholar
  19. 19.
    Schöchl H, Nienaber U, Hofer G et al (2010) Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care 14:R55PubMedCrossRefGoogle Scholar
  20. 20.
    Weber CF, Görlinger K, Meininger D et al (2012) Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology 117:531–547PubMedCrossRefGoogle Scholar
  21. 21.
    Levi M, Fries D, Gombotz H et al (2011) Prevention and treatment of coagulopathy in patients receiving massive transfusions. Vox Sang 101:154–174PubMedCrossRefGoogle Scholar
  22. 22.
    Lier H, Böttiger BW, Hinkelbein J et al (2011) Coagulation management in multiple trauma: a systematic review. Intensive Care Med 37:572–582PubMedCrossRefGoogle Scholar
  23. 23.
    Zander R (2010) Anaemia and massive bleeding apart from the aspect of oxygenation. Wien Klin Wochenschr 122:6–8Google Scholar
  24. 24.
    Cooper DJ, Myles PS, McDermott FT et al (2004) HTS study investigators. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291:1350–1357PubMedCrossRefGoogle Scholar
  25. 25.
    Bulger EM, May S, Brasel KJ et al (2010) ROC investigators. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA 304:1455–1464PubMedCrossRefGoogle Scholar
  26. 26.
    Bulger EM, May S, Kerby JD et al (2011) ROC investigators. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg 253:431–441PubMedCrossRefGoogle Scholar
  27. 27.
    Morrison LJ, Baker AJ, Rhind SG et al (2011) The Toronto prehospital hypertonic resuscitation-head injury and multiorgan dysfunction trial: feasibility study of a randomized controlled trial. J Crit Care 26:363–372PubMedCrossRefGoogle Scholar
  28. 28.
    Perel P, Roberts I (2011) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 3:CD000567PubMedGoogle Scholar
  29. 29.
    James MF, Michell WL, Joubert IA et al (2011) Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (Fluids in Resuscitation of Severe Trauma). Br J Anaesth 107:693–702PubMedCrossRefGoogle Scholar
  30. 30.
    Lissauer ME, Chi A, Kramer ME et al (2011) Association of 6% hetastarch resuscitation with adverse outcomes in critically ill trauma patients. Am J Surg 202:53–58PubMedCrossRefGoogle Scholar
  31. 31.
    Wolberg AS, Meng ZH, Monroe DM III, Hoffman M (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56:1221–1128PubMedCrossRefGoogle Scholar
  32. 32.
    Spahn DR, Rossaint R (2005) Coagulopathy and blood component transfusion in trauma. Br J Anaesth 95:130–139PubMedCrossRefGoogle Scholar
  33. 33.
    Schreiber MA (2004) Damage control surgery. Crit Care Clin 20:101–118PubMedCrossRefGoogle Scholar
  34. 34.
    Meng ZH, Wolberg AS, Monroe DM, Hoffman M (2003) The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 55:886–891PubMedCrossRefGoogle Scholar
  35. 35.
    Engstrom M, Schott U, Romner B et al (2006) Acidosis impairs the coagulation: a thromboelastographic study. J Trauma 61:624–628PubMedCrossRefGoogle Scholar
  36. 36.
    Gonzalez EA, Moore FA, Holcomb JB et al (2007) Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma 62:112–119PubMedCrossRefGoogle Scholar
  37. 37.
    Lier H, Krep H, Schroeder S, Stuber F (2008) Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia and hypothermia on functional hemostasis in trauma. J Trauma 65:951–960PubMedCrossRefGoogle Scholar
  38. 38.
    Vivien B, Langeron O, Morell E et al (2005) Early hypocalcemia in severe trauma. Crit Care Med 33:1946–1952PubMedCrossRefGoogle Scholar
  39. 39.
    Hébert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417PubMedCrossRefGoogle Scholar
  40. 40.
    Carless PA, Henry DA, Carson JL et al (2010) Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev 10:CD002042PubMedGoogle Scholar
  41. 41.
    Beekley AC (2008) Damage control resuscitation: a sensible approach to the exsanguinating surgical patient. Crit Care Med 36:267–274CrossRefGoogle Scholar
  42. 42.
    Tinmouth A, Fergusson D, Yee IC et al (2006) Clinical consequences of red cell storage in the critically ill. Transfusion 46:2014–2027PubMedCrossRefGoogle Scholar
  43. 43.
    Hardy JF, Moerloose P de, Samama CM (2006) Members of the Groupe d’Intérêt en Hémostase Périopératoire. Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth 53:40–58CrossRefGoogle Scholar
  44. 44.
    Hanke AA, Dellweg C, Kienbaum P et al (2010) Effects of desmopressin on platelet function under conditions of hypothermia and acidosis: an in vitro study using multiple electrode aggregometry. Anaesthesia 65:688–691PubMedCrossRefGoogle Scholar
  45. 45.
    Stanworth SJ, Brunskill SJ, Hyde CJ et al (2004) Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials. Br J Haematol 126:139–152PubMedCrossRefGoogle Scholar
  46. 46.
    Holcomb JB, Wade CE, Michalek JE et al (2008) Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg 248:447–458PubMedGoogle Scholar
  47. 47.
    Borgman MA, Spinella PC, Perkins JG et al (2007) The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma 63:805–813PubMedCrossRefGoogle Scholar
  48. 48.
    Snyder CW, Weinberg JA, McGwin G Jr et al (2009) The relationship of blood product ratio to mortality: survival benefit or survival bias? J Trauma 66:358–362PubMedCrossRefGoogle Scholar
  49. 49.
    Murad MH, Stubbs JR, Gandhi MJ et al (2010) The effect of plasma transfusion on morbidity and mortality: a systematic review and meta-analysis. Transfusion 50:1370–1383PubMedCrossRefGoogle Scholar
  50. 50.
    Spinella PC, Holcomb JB (2009) Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev 23:231–240PubMedCrossRefGoogle Scholar
  51. 51.
    Sperry JL, Ochoa JB, Gunn SR et al (2008) An FFP:PRBC transfusion ratio >/=1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma 65:986–993PubMedCrossRefGoogle Scholar
  52. 52.
    Sarani B, Dunkman WJ, Dean L et al (2008) Transfusion of fresh frozen plasma in critically ill surgical patients is associated with an increased risk of infection. Crit Care Med 36:1114–1118PubMedCrossRefGoogle Scholar
  53. 53.
    Shanwell A, Andersson TM, Rostgaard K et al (2009) Post-transfusion mortality among recipients of ABO-compatible but non-identical plasma. Vox Sang 96:316–323PubMedCrossRefGoogle Scholar
  54. 54.
    Inaba K, Branco BC, Rhee P et al (2010) Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch Surg 145:899–906PubMedCrossRefGoogle Scholar
  55. 55.
    Fries D, Innerhofer P, Schobersberger W (2009) Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol 22:267–274PubMedCrossRefGoogle Scholar
  56. 56.
    Schöchl H, Voelckel W, Maegele M, Solomon C (2012) Trauma-associated hyperfibrinolysis. Hamostaseologie 32:22–27PubMedCrossRefGoogle Scholar
  57. 57.
    Schöchl H, Frietsch T, Pavelka M, Jámbor C (2009) Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67:125–131PubMedCrossRefGoogle Scholar
  58. 58.
    Cap AP, Baer DG, Orman JA et al (2011) Tranexamic acid for trauma patients: a critical review of the literature. J Trauma 71:9–14CrossRefGoogle Scholar
  59. 59.
    CRASH-2 trial collaborators, Shakur H, Roberts I, Bautista R et al (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376:23–32Google Scholar
  60. 60.
    CRASH-2 trial collaborators (2011) The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet 377:1096–1101Google Scholar
  61. 61.
    Henry DA, Carless PA, Moxey AJ et al (2011) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev 3:CD001886PubMedGoogle Scholar
  62. 62.
    Henrich W, Surbek D, Kainer F et al (2008) Diagnosis and treatment of peripartum bleeding. J Perinat Med 36:467–478PubMedCrossRefGoogle Scholar
  63. 63.
    Hiippala ST, Myllylä GJ, Vahtera EM (1995) Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 81:360–365PubMedGoogle Scholar
  64. 64.
    Fries D, Krismer A, Klingler A et al (2005) Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth 95:172–177PubMedCrossRefGoogle Scholar
  65. 65.
    Velik-Salchner C, Haas T, Innerhofer P et al (2007) The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost 5:1019–1025PubMedCrossRefGoogle Scholar
  66. 66.
    Grottke O, Braunschweig T, Henzler D et al (2010) Effects of different fibrinogen concentrations on blood loss and coagulation parameters in a pig model of coagulopathy with blunt liver injury. Crit Care 14:R62PubMedCrossRefGoogle Scholar
  67. 67.
    Kozek-Langenecker S, Sørensen B, Hess JR, Spahn DR (2011) Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: a systematic review. Crit Care 15:R239PubMedCrossRefGoogle Scholar
  68. 68.
    Adam S, Karger R, Kretschmer V (2010) Influence of different hydroxyethyl starch (HES) formulations on fibrinogen measurement in HES-diluted plasma. Clin Appl Thromb Hemost 16:454-460PubMedCrossRefGoogle Scholar
  69. 69.
    Kalina U, Bickhard H, Schulte S (2008) Biochemical comparison of seven commercially available prothrombin complex concentrates. Int J Clin Pract 62:1614–1622PubMedCrossRefGoogle Scholar
  70. 70.
    Bruce D, Nokes TJ (2008) Prothrombin complex concentrate (Beriplex P/N) in severe bleeding: experience in a large tertiary hospital. Crit Care 12:R105PubMedCrossRefGoogle Scholar
  71. 71.
    Schick KS, Fertmann JM, Jauch KW, Hoffmann JN (2009) Prothrombin complex concentrate in surgical patients: retrospective evaluation of vitamin K antagonist reversal and treatment of severe bleeding. Crit Care 13:R191PubMedCrossRefGoogle Scholar
  72. 72.
    Dickneite G, Pragst I (2009) Prothrombin complex concentrate vs fresh frozen plasma for reversal of dilutional coagulopathy in a porcine trauma model. Br J Anaesth 102:345–354PubMedCrossRefGoogle Scholar
  73. 73.
    Dickneite G, Doerr B, Kaspereit F (2008) Characterization of the coagulation deficit in porcine dilutional coagulopathy and substitution with a prothrombin complex concentrate. Anesth Analg 106:1070–1077PubMedCrossRefGoogle Scholar
  74. 74.
    Honickel M, Rieg A, Rossaint R et al (2011) Prothrombin complex concentrate reduces blood loss and enhances thrombin generation in a pig model with blunt liver injury under severe hypothermia. Thromb Haemost 106:724–733PubMedCrossRefGoogle Scholar
  75. 75.
    Mitterlechner T, Innerhofer P, Streif W et al (2011) Prothrombin complex concentrate and recombinant prothrombin alone or in combination with recombinant factor X and FVIIa in dilutional coagulopathy: a porcine model. J Thromb Haemost 9:729–737PubMedCrossRefGoogle Scholar
  76. 76.
    Grottke O, Braunschweig T, Spronk HM et al (2011) Increasing concentrations of prothrombin complex concentrate induce disseminated intravascular coagulation in a pig model of coagulopathy with blunt liver injury. Blood 118:1943–1951PubMedCrossRefGoogle Scholar
  77. 77.
    Schöchl H, Forster L, Woidke R et al (2010) Use of rotation thromboelastometry (ROTEM) to achieve successful treatment of polytrauma with fibrinogen concentrate and prothrombin complex concentrate. Anaesthesia 65:199–203PubMedCrossRefGoogle Scholar
  78. 78.
    Hedner U, Erhardtsen E (2003) Potential role of recombinant factor VIIa as a hemostatic agent. Clin Adv Hematol Oncol 1:112–119PubMedGoogle Scholar
  79. 79.
    Grottke O, Henzler D, Rossaint R (2010) Activated recombinant factor VII (rFVIIa). Best Pract Res Clin Anaesthesiol 24:95–106PubMedCrossRefGoogle Scholar
  80. 80.
    Franchini M, Franchi M, Bergamini V et al (2010) The use of recombinant activated FVII in postpartum hemorrhage. Clin Obstet Gynecol 53:219–227PubMedCrossRefGoogle Scholar
  81. 81.
    Boffard KD, Riou B, Warren B et al; NovoSeven Trauma Study Group (2005) Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 59:8–15PubMedCrossRefGoogle Scholar
  82. 82.
    Hauser CJ, Boffard K, Dutton R et al; CONTROL Study Group (2010) Results of the CONTROL trial: efficacy and safety of recombinant activated Factor VII in the management of refractory traumatic hemorrhage. J Trauma 69:489–500PubMedCrossRefGoogle Scholar
  83. 83.
    Levi M, Levy JH, Andersen HF, Truloff D (2010) Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med 363:1791–1800PubMedCrossRefGoogle Scholar
  84. 84.
    O’Connell KA, Wood JJ, Wise RP et al (2006) Thromboembolic adverse events after use of recombinant human coagulation factor VIIa. JAMA 295:293–298CrossRefGoogle Scholar
  85. 85.
    Yank V, Tuohy CV, Logan AC et al (2011) Systematic review: benefits and harms of in-hospital use of recombinant factor VIIa for off-label indications. Ann Intern Med 154:529–540PubMedCrossRefGoogle Scholar
  86. 86.
    Vincent JL, Rossaint R, Riou B et al (2006) Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding – a European perspective. Crit Care 10:R120PubMedCrossRefGoogle Scholar
  87. 87.
    Carless PA, Henry DA, Moxey AJ et al (2004) Desmopressin for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev 1:CD001884PubMedGoogle Scholar
  88. 88.
    Liesenfeld KH, Schäfer HG, Trocóniz IF et al (2006) Effects of the direct thrombin inhibitor dabigatran on ex vivo coagulation time in orthopaedic surgery patients: a population model analysis. Br J Clin Pharmacol 62:527–537PubMedCrossRefGoogle Scholar
  89. 89.
    http://www.bfarm.de/DE/Pharmakovigilanz/blutPradaxa/blutPradaxa-inhalt.html. Zugegriffen: 19. Dez. 2012Google Scholar
  90. 90.
    Eerenberg ES, Kamphuisen PW, Sijpkens MK et al (2011) Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation 124:1573–1579PubMedCrossRefGoogle Scholar
  91. 91.
    Desmurs-Clavel H, Huchon C, Chatard B et al (2009) Reversal of the inhibitory effect of fondaparinux on thrombin generation by rFVIIa, aPCC and PCC. Thromb Res 123:796–798PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • O. Grottke
    • 1
  • T. Frietsch
    • 2
  • M. Maas
    • 3
  • H. Lier
    • 4
  • R. Rossaint
    • 1
  1. 1.Klinik für AnästhesiologieUniversitätsklinikum AachenAachenDeutschland
  2. 2.Anästhesie und IntensivmedizinRobert Bosch Klinikum SchillerhöheGerlingenDeutschland
  3. 3.Klinik für Anästhesiologie, operative Intensivmedizin und SchmerztherapieUniversitätsklinikum MünsterMünsterDeutschland
  4. 4.Klinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum KölnKölnDeutschland

Personalised recommendations