Der Anaesthesist

, Volume 62, Issue 1, pp 20–26

Postoperative Bestimmung des täglichen Energiebedarfs

Vergleich von zwei Methoden
  • R. Dummler
  • A. Zittermann
  • M. Schäfer
  • M. Emmerich
Originalien

Zusammenfassung

Hintergrund

Die Ermittlung des Ruheenergieumsatzes (REE) intensivmedizinischer Patienten erfolgt in der klinischen Praxis mit Formeln wie den Harris-Benedict-Gleichungen (HBE). Messungen des REE, z. B. durch indirekte Kalorimetrie, sind in der klinischen Routine nicht verbreitet. Ziel der Studie war die Überprüfung der Übereinstimmung von REE-Schätzungen mithilfe der HBE (EEHBE) und REE-Messungen mit dem nichtinvasiven SenseWear®-Armband (EESWA) bei normometabolen postoperativen Patienten. Weiterhin wurde untersucht, ob eine postoperative thorakale Periduralanästhesie (t-PDA) den EESWA im Vergleich zu einer Schmerztherapie mit Metamizol und Tramadol beeinflusst.

Methoden

Bei 50 Patienten wurde nach elektiver Darmresektion mit Laparotomie und Ankunft auf der Intensivstation ein 24-stündiges Messintervall durch Positionierung des SWA am rechten Oberarm durchgeführt. Bei Patienten ohne Periduralkatheter (n = 24) wurde eine i.v.-Schmerztherapie mit Metamizol und Tramadol begonnen, andernfalls erfolgte die Applikation von Sufentanil und Ropivacain kontinuierlich als t-PDA (n = 26).

Ergebnisse

Der Bias zwischen EESWA und EEHBE betrug −0,569 ± 0,378 kcal/kgKG/24 h; dies entspricht einer systematischen Abweichung von −2,9%. Auch unter Differenzierung in einen niedrigen (EEHBE < 18 kcal/kgKG/24 h, n = 9), mittleren (EEHBE 18–21 kcal/kgKG/24 h, n = 30) und erhöhten energetischen Bereich (EEHBE > 21 kcal/kgKG/24 h, n = 11) konnte kein signifikanter Unterschied zwischen EESWA und EEHBE festgestellt werden. Ebenfalls ergab sich kein signifikanter Unterschied im EESWA zwischen der t-PDA-Gruppe und den Patienten mit konventioneller Schmerztherapie.

Schlussfolgerungen

Das SWA ist für normometabole akutmedizinische Patienten ein valides und komfortables Instrument zur Messung des REE als Alternative zur Schätzung mithilfe der HBE. Weitere Untersuchungen müssen folgen, um die Validität des SWA bei Patienten mit gestörtem Metabolismus zu verifizieren.

Schlüsselwörter

Energiemetabolismus Grundumsatz Monitoring, physiologisch Periduralanästhesie Versorgung, postoperativ 

Postoperative assessment of daily energy expenditure

Comparison of two methods

Abstract

Background

The reference method for determining resting energy expenditure (REE) in clinical nutrition practice is measurement by indirect calorimetry; however, indirect calorimetry has some limitations, is expensive and not widely available. Therefore, the most used methods to estimate the caloric requirements in intensive care patients are predictive equations. The Harris-Benedict equations (HBE) are the most common formulae in the clinical setting. The SenseWear® armlet (SWA) is a noninvasive device that monitors skin temperature, heat flux, galvanic skin response and movement. These data as well as anthropometric characteristics are used to calculate REE. The aim of this study was to evaluate the levels of agreement and interchangeability of REE estimated by HBE (EEHBE) and measured by SWA (EESWA) in normometabolic patients after elective bowel resection with laparotomy. Furthermore, postsurgical pain therapy by continuous thoracic epidural anaesthesia (t-PDA) was compared with continuous intravenous pain therapy regarding EESWA in these patients.

Methods

After obtaining approval by the ethics committee and written informed consent 57 patients participated in the study procedures. A total of 50 patients (23 male, 27 female) were finally included in the data analysis because 7 patients did not meet the criterion of > 80% on-body time of the SWA. Additional (a priori) exclusion criteria were metabolic or cardiopulmonary decompensation or postoperative mechanical ventilation. Before induction of general anesthesia 26 patients received a thoracic epidural catheter. Immediately after surgery the SWA was placed on the right upper arm of each patient for 24 h. A continuous pain therapy was started either an epidural application of ropivacain 0.2% and sufentanil or in the other 24 patients an intravenous infusion of metamizol and tramadol.

Results and discussion

The data showed good agreement between EESWA and EEHBE. The mean on-body time was found to be 22.94 ± 4.77 h. There were no significant differences between EESWA and EEHBE (p > 0.05) corresponding to a high Pearson’s coefficient of correlation of 0.985. The mean bias (EESWA-EEHBE) was −0.569 ± 0.378 kcal/kgBW/24 h reflecting a minimal systematic underestimation of REE by SWA of −2.9% compared to EEHBE. The Bland-Altman plot shows interchangeability of EESWA and EEHBE. It was noted that 94% of the data points (47 out of 50 patients) were within ± 2 SD and the remaining 3 data points were lying close to the 95% interval. The same results (no significant differences between EESWA and EEHBE) were obtained after differentiation of EEHBE into low (< 18 kcal/kgBW/24 h, n = 9), medium (18–21 kcal/kgBW/24 h, n = 30) and high (> 21 kcal/kgBW/24 h, n = 11) energy ranges. There were no significant differences in EESWA regarding postsurgical pain therapy regimens.

Conclusions

The SWA showed reliable concordance with daily REE estimated by HBE in normometabolic postsurgery patients. This noninvasive, convenient and easy to handle device may be helpful in determining energy requirements as part of metabolic monitoring. Further research is needed to validate the method in patients with severe metabolic disturbances. The energetic requirements of patients with postoperative t-PDA were not different from those with intravenous pain therapy.

Keywords

Energy metabolism Basal metabolism Monitoring, physiologic Epidural anesthesia Care, postoperative 

Literatur

  1. 1.
    Adolph M, Eckart J (1990) Der Energiebedarf operierter, verletzter und septischer Patienten. Infusionsther Transfusionsmed 17:5–16Google Scholar
  2. 2.
    Bertoli S, Posata A, Battezzati A et al (2008) Poor agreement between a portable armband and indirect calorimetry in the assessment of resting energy expenditure. Clin Nutr 27:307–310PubMedCrossRefGoogle Scholar
  3. 3.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  4. 4.
    Carli F, Kehlet H, Baldini G et al (2011) Evidence basis for regional anesthesia in multidisciplinary fast-track surgical care pathways. Reg Anesth Pain Med 36:63–72PubMedCrossRefGoogle Scholar
  5. 5.
    Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. Carnegie Institution of Washington, Publ. 279Google Scholar
  6. 6.
    Kemper M, Weissman C, Hyman AI (1992) Caloric requirements and supply in critically ill surgical patients. Crit Care Med 20:344–348PubMedCrossRefGoogle Scholar
  7. 7.
    Kessler P (2011) Update rückenmarksnahe Anästhesie und Analgesie – weniger Nutzen, mehr Gefahr? Anaesth Intensivmed 52:846–860Google Scholar
  8. 8.
    Kozian A, Schilling T, Hachenberg T (2005) Non-analgetic effects of thoracic epidural anaesthesia. Curr Opin Anaesthesiol 18:29–34PubMedCrossRefGoogle Scholar
  9. 9.
    Kreymann G, Adolph M, Müller MJ (2007) Energieumsatz und Energiezufuhr. Aktuel Ernaehr Med 32(Suppl 1):8–12CrossRefGoogle Scholar
  10. 10.
    Kreymann G, Berger MM, Deutz NEP (2007) Intensivmedizin – enterale Ernährung und parenterale Ernährung. In: Kreymann G, Weimann A, Schütz T et al (Hrsg) DGEM – Leitlinien Enterale und Parenterale Ernährung. Thieme, Stuttgart, S 35–39Google Scholar
  11. 11.
    Lattermann R, Carli F, Schricker T (2002) Epidural blockade suppresses lipolysis during major abdominal surgery. Reg Anesth Pain Med 27:469–475PubMedGoogle Scholar
  12. 12.
    Ludbrook J (2010) Confidence in Bland-Altman plots: a critical review of the method of differences. Clin Exp Pharmacol Physiol 37:143–149PubMedCrossRefGoogle Scholar
  13. 13.
    Malavolti M, Pietrobelli A, Dugoni M et al (2007) A new device for measuring resting energy expenditure (REE) in healthy subjects. Nutr Metab Cardiovasc Dis 17:338–343PubMedCrossRefGoogle Scholar
  14. 14.
    McClave SA, McClain CJ, Snider HL (2001) Should indirect calorimetry be used as a part of nutritional assessment? J Clin Gastroenterol 33:14–19PubMedCrossRefGoogle Scholar
  15. 15.
    Naomi EC, Rupinder D, Andrew GD et al (2010) Nutrition therapy in the critical care setting: What is best achievable practice? An international multicenter observational study. Crit Care Med 38:395–401CrossRefGoogle Scholar
  16. 16.
    Papazoglou D, Augello G, Tagliaferri M et al (2006) Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity 14:2217–2223PubMedCrossRefGoogle Scholar
  17. 17.
    Petersen PH, Stöckl D, Blaabjerg O (1997) Graphical interpretation of analytical data from comparison of a field method with a reference method by use of difference plots. Clin Chem 43:2039–2046PubMedGoogle Scholar
  18. 18.
    Rocha EEM, Alves VGF, Fonseca RBV (2006) Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care 9:247–256PubMedCrossRefGoogle Scholar
  19. 19.
    Rocha EEM, Alves VGF, Silva MHN (2005) Can measured resting energy expenditure be estimated by formulae in daily clinical nutrition practice? Curr Opin Clin Nutr Metab Care 8:319–328PubMedCrossRefGoogle Scholar
  20. 20.
    Rokuss K, Kalenka A, Bender HJ, Hinkelbein J (2009) Intensivmedizinische Patienten, Abschätzung des täglichen Energiebedarfs- Vergleich zweier Verfahren. Anaesthesist 58:787–794PubMedCrossRefGoogle Scholar
  21. 21.
    Schlegelmilch RM (2008) Das Armband. Kompendium, WürzburgGoogle Scholar
  22. 22.
    Schütz T, Hoffmann I, Lochs H, Pirlich M (2006) Ist das Sense-Wear-Armband zur Messung des Ruheenergieumsatzes geeignet? Aktuel Ernahrungsmed 31:139Google Scholar
  23. 23.
    Singer P, Anbar R, Cohan J et al (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37:601–609PubMedCrossRefGoogle Scholar
  24. 24.
    St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R (2007) Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 85:742–749PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Dummler
    • 1
  • A. Zittermann
    • 2
  • M. Schäfer
    • 1
  • M. Emmerich
    • 1
  1. 1.Institut für Anästhesiologie und IntensivmedizinKrankenhaus Bad OeynhausenBad OeynhausenDeutschland
  2. 2.Klinik für Thorax- und Kardiovaskularchirurgie, Herz-und Diabeteszentrum Nordrhein-WestfalenRuhr-Universität BochumBad OeynhausenDeutschland

Personalised recommendations