Der Anaesthesist

, Volume 62, Issue 1, pp 9–19 | Cite as

Aspekte der perioperativen Behandlung von Diabetespatienten

  • G. Pestel
  • D. Closhen
  • A. Zimmermann
  • C. Werner
  • M.M. Weber


Diabetes mellitus ist in Deutschland eine Volkskrankheit. Aufgrund der diabetischen Folgeerkrankungen (Makroangiopathie, Mikroangiopathie und Neuropathie) bedürfen Diabetespatienten einer intensiveren anästhesiologischen Betreuung in der perioperativen Phase im Vergleich zu Nichtdiabetespatienten. Eine sorgfältige, ausführliche Anamnese mit Erfassung des diabetesbedingten perioperativen Gefährdungspotenzials (Herz-Kreislauf-Erkrankungen, Gastroparese, Neuropathie, „Stiff-joint“-Syndrom) hat nach derzeitigem Wissensstand wahrscheinlich größere Bedeutung als eine spezifische Medikamenten- oder Verfahrenswahl. Das intraoperative anästhesiologische Management diabeteskranker Patienten fokussiert sich in besonderem Maß auf die Erhaltung der hämodynamischen Stabilität, perioperative Infektionsprophylaxe und Kontrolle der Glucosehomöostase. Wurde noch vor einigen Jahren das Erzwingen einer strikten Normoglykämie mithilfe forcierter Insulintherapie propagiert, erkennen neuere Studien hierin ein Risikopotenzial. Die optimierte perioperative Behandlung von Diabetespatienten sollte daher den gewünschten Blutzuckerspiegel klar benennen, bewährte Therapiealgorithmen vorhalten und eine engmaschige Überwachung mit ggf. umgehender Modifikation der Behandlung ermöglichen.


Diabetes mellitus Insulin Patientenüberwachung Perioperative Behandlung Diabetische Angiopathien 

Aspects of perioperative care in patients with diabetes


Diabetes is a common disease in Germany. Due to diabetes-associated end-organ disease, such as large and small vessel disease and neuropathy, diabetic patients require more intense anesthesia care during the perioperative phase. An in-depth and comprehensive medical history focusing on hemodynamic alterations, gastroparesis, neuropathy and stiff joint syndrome is a cornerstone of perioperative care and may affect outcome of diabetes patients more than specific anesthetic medications or the anesthetic procedure. Intraoperative anesthetic care needs to focus on preservation of hemodynamic stability, perioperative infection control and maintenance of glucose homeostasis. Whereas some years ago strict glucose control by aggressive insulin therapy was adamantly advocated, the results of recent studies have put the risk of such therapeutic algorithms into perspective. Therefore, optimized perioperative care of diabetic patients consists of setting a predefined targeted blood glucose level, evidence-based therapeutic approaches to reach that goal and finally adequate and continuous monitoring and amendment of the therapeutic approach if required.


Diabetes mellitus Insulin Patient monitoring Perioperative care Diabetic angiopathies 


  1. 1.
    Adler AI, Stevens RJ, Manley SE et al (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63:225–232PubMedCrossRefGoogle Scholar
  2. 2.
    Alper I, Ulukaya S, Makay O et al (2010) The pharmacodynamic effects of rocuronium during general anesthesia in patients with type 2 diabetes mellitus. Minerva Anestesiol 76:115–119PubMedGoogle Scholar
  3. 3.
    Amour J, Kersten JR (2008) Diabetic cardiomyopathy and anesthesia: bench to bedside. Anesthesiology 108:524–530PubMedCrossRefGoogle Scholar
  4. 4.
    Anonymous (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49:12–154CrossRefGoogle Scholar
  5. 5.
    Bagdade JD, Root RK, Bulger RJ (1974) Impaired leukocyte function in patients with poorly controlled diabetes. Diabetes 23:9–15PubMedGoogle Scholar
  6. 6.
    Belhoula M, Ciebiera JP, De La Chapelle A et al (2003) Clonidine premedication improves metabolic control in type 2 diabetic patients during ophthalmic surgery. Br J Anaesth 90:434–439PubMedCrossRefGoogle Scholar
  7. 7.
    Bottini P, Boschetti E, Pampanelli S et al (1997) Contribution of autonomic neuropathy to reduced plasma adrenaline responses to hypoglycemia in IDDM: evidence for a nonselective defect. Diabetes 46:814–823PubMedCrossRefGoogle Scholar
  8. 8.
    Boyer JK, Thanigaraj S, Schechtman KB et al (2004) Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 93:870–875PubMedCrossRefGoogle Scholar
  9. 9.
    Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139PubMedCrossRefGoogle Scholar
  10. 10.
    Calverley PM, Ewing DJ, Campbell IW et al (1982) Preservation of the hypoxic drive to breathing in diabetic autonomic neuropathy. Clin Sci (Lond) 63:17–22Google Scholar
  11. 11.
    Chang K, Uitto J, Rowold EA et al (1980) Increased collagen cross-linkages in experimental diabetes: reversal by beta-aminopropionitrile and D-penicillamine. Diabetes 29:778–781PubMedCrossRefGoogle Scholar
  12. 12.
    Channer KS, Jackson PC, O’Brien I et al (1985) Oesophageal function in diabetes mellitus and its association with autonomic neuropathy. Diabet Med 2:378–382PubMedCrossRefGoogle Scholar
  13. 13.
    Charlson ME, Mackenzie CR, Gold JP et al (1990) Preoperative characteristics predicting intraoperative hypotension and hypertension among hypertensives and diabetics undergoing noncardiac surgery. Ann Surg 212:66–81PubMedCrossRefGoogle Scholar
  14. 14.
    Chen D, Lee SL, Peterfreund RA (2009) New therapeutic agents for diabetes mellitus: implications for anesthetic management. Anesth Analg 108:1803–1810PubMedCrossRefGoogle Scholar
  15. 15.
    David JS, Tavernier B, Amour J et al (2004) Myocardial effects of halothane and sevoflurane in diabetic rats. Anesthesiology 100:1179–1187PubMedCrossRefGoogle Scholar
  16. 16.
    Desborough JP, Hall GM, Hart GR et al (1991) Midazolam modifies pancreatic and anterior pituitary hormone secretion during upper abdominal surgery. Br J Anaesth 67:390–396PubMedCrossRefGoogle Scholar
  17. 17.
    Desborough JP, Jones PM, Persaud SJ et al (1993) Isoflurane inhibits insulin secretion from isolated rat pancreatic islets of Langerhans. Br J Anaesth 71:873–876PubMedCrossRefGoogle Scholar
  18. 18.
    DeutscheGesellschaft für Anästhesiologie und Intensivmedizin, Deutsche Gesellschaft für Innere Medizin, Deutsche Gesellschaft für Chirurgie (2010) Präoperative Evaluation erwachsener Patienten vor elektiven, nichtkardiochirurgischen Eingriffen. Anaesthesist 59:1041–1050CrossRefGoogle Scholar
  19. 19.
    Diltoer M, Camu F (1988) Glucose homeostasis and insulin secretion during isoflurane anesthesia in humans. Anesthesiology 68:880–886PubMedCrossRefGoogle Scholar
  20. 20.
    Doenst T, Wijeysundera D, Karkouti K et al (2005) Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 130:1144PubMedCrossRefGoogle Scholar
  21. 21.
    Donatelli F, Vavassori A, Bonfanti S et al (2007) Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only. Anesth Analg 104:1587–1593PubMedCrossRefGoogle Scholar
  22. 22.
    Duncan AI, Koch CG, Xu M et al (2007) Recent metformin ingestion does not increase in-hospital morbidity or mortality after cardiac surgery. Anesth Analg 104:42–50PubMedCrossRefGoogle Scholar
  23. 23.
    Ebel D, Mullenheim J, Frassdorf J et al (2003) Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch 446:175–182PubMedGoogle Scholar
  24. 24.
    Erden V, Basaranoglu G, Delatioglu H et al (2003) Relationship of difficult laryngoscopy to long-term non-insulin-dependent diabetes and hand abnormality detected using the ‚prayer sign’. Br J Anaesth 91:159–160PubMedCrossRefGoogle Scholar
  25. 25.
    Fach EM, Garulacan LA, Gao J et al (2004) In vitro biomarker discovery for atherosclerosis by proteomics. Mol Cell Proteomics 3:1200–1210PubMedCrossRefGoogle Scholar
  26. 26.
    Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297PubMedCrossRefGoogle Scholar
  27. 27.
    Fleisher LA, Beckman JA, Brown KA et al (2007) ACC/AHA 2007 Guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery) developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. J Am Coll Cardiol 50:1707–1732PubMedCrossRefGoogle Scholar
  28. 28.
    Fragen RJ, Shanks CA, Molteni A et al (1984) Effects of etomidate on hormonal responses to surgical stress. Anesthesiology 61:652–656PubMedCrossRefGoogle Scholar
  29. 29.
    Frei CR, Daniels KR (2012) Potential complications of Medicare reimbursement policy regarding health-care-associated infections. Am J Health Syst Pharm 69:190, 192PubMedCrossRefGoogle Scholar
  30. 30.
    Furnary AP, Zerr KJ, Grunkemeier GL, Starr A (1999) Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann Thorac Surg 67:352–360, discussion 360–362PubMedCrossRefGoogle Scholar
  31. 31.
    Gandhi GY, Nuttall GA, Abel MD et al (2007) Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med 146:233–243PubMedGoogle Scholar
  32. 32.
    Gingerich R, Wright PH, Paradise RR (1974) Inhibition by halothane of glucose-stimulated insulin secretion in isolated pieces of rat pancreas. Anesthesiology 40:449–452PubMedCrossRefGoogle Scholar
  33. 33.
    Grgic A, Rosenbloom AL, Weber FT et al (1976) Joint contracture—common manifestation of childhood diabetes mellitus. J Pediatr 88:584–588PubMedCrossRefGoogle Scholar
  34. 34.
    Gu W, Kehl F, Krolikowski JG et al (2008) Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology 108:634–642PubMedCrossRefGoogle Scholar
  35. 35.
    Gu W, Pagel PS, Warltier DC et al (2003) Modifying cardiovascular risk in diabetes mellitus. Anesthesiology 98:774–779PubMedCrossRefGoogle Scholar
  36. 36.
    Hall GM (1985) The anaesthetic modification of the endocrine and metabolic response to surgery. Ann R Coll Surg Engl 67:25–29PubMedGoogle Scholar
  37. 37.
    Hattori Y, Azuma M, Kemmotsu O et al (1992) Differential sensitivity of diabetic rat papillary muscles to negative inotropic effects of oxybarbiturates versus thiobarbiturates. Anesth Analg 74:97–104PubMedCrossRefGoogle Scholar
  38. 38.
    Kadoi Y (2010) Anesthetic considerations in diabetic patients. Part II: intraoperative and postoperative management of patients with diabetes mellitus. J Anesth 24:748–756PubMedCrossRefGoogle Scholar
  39. 39.
    Kahn L (1997) Neuropathies masquerading as an epidural complication. Can J Anaesth 44:313–316PubMedCrossRefGoogle Scholar
  40. 40.
    Kalichman MW, Calcutt NA (1992) Local anesthetic-induced conduction block and nerve fiber injury in streptozotocin-diabetic rats. Anesthesiology 77:941–947PubMedCrossRefGoogle Scholar
  41. 41.
    Kehl F, Krolikowski JG, Mraovic B et al (2002) Hyperglycemia prevents isoflurane-induced preconditioning against myocardial infarction. Anesthesiology 96:183–188PubMedCrossRefGoogle Scholar
  42. 42.
    Kersten JR, Gross GJ, Pagel PS et al (1998) Activation of adenosine triphosphate-regulated potassium channels: mediation of cellular and organ protection. Anesthesiology 88:495–513PubMedCrossRefGoogle Scholar
  43. 43.
    Kersten JR, Toller WG, Gross ER et al (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:H1218–1224PubMedGoogle Scholar
  44. 44.
    Keyl C, Lemberger P, Palitzsch KD et al (1999) Cardiovascular autonomic dysfunction and hemodynamic response to anesthetic induction in patients with coronary artery disease and diabetes mellitus. Anesth Analg 88:985–991PubMedGoogle Scholar
  45. 45.
    Kindler CH, Seeberger MD, Staender SE (1998) Epidural abscess complicating epidural anesthesia and analgesia. An analysis of the literature. Acta Anaesthesiol Scand 42:614–620PubMedCrossRefGoogle Scholar
  46. 46.
    Kita T, Mammoto T, Taniguchi H et al (2003) Diabetes attenuates the hemodynamic stabilizing effects of oral clonidine during off-pump coronary artery bypass surgery. J Clin Anesth 15:520–524PubMedCrossRefGoogle Scholar
  47. 47.
    Kong MF, Horowitz M, Jones KL et al (1999) Natural history of diabetic gastroparesis. Diabetes Care 22:503–507PubMedCrossRefGoogle Scholar
  48. 48.
    Koster I, Von Ferber L, Ihle P et al (2006) The cost burden of diabetes mellitus: the evidence from Germany—the CoDiM study. Diabetologia 49:1498–1504PubMedCrossRefGoogle Scholar
  49. 49.
    Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 334:1209–1215PubMedCrossRefGoogle Scholar
  50. 50.
    Latson TW, Ashmore TH, Reinhart DJ et al (1994) Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology 80:326–337PubMedCrossRefGoogle Scholar
  51. 51.
    Lazar HL, Chipkin SR, Fitzgerald CA et al (2004) Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation 109:1497–1502PubMedCrossRefGoogle Scholar
  52. 52.
    Liebl A, Spannheimer A, Reitberger U et al (2002) Costs of long-term complications in type 2 diabetes patients in Germany. Results of the CODE-2 Study. Med Klin (Munich) 97:713–719Google Scholar
  53. 53.
    Margolis JR, Kannel WS, Feinleib M et al (1973) Clinical features of unrecognized myocardial infarction—silent and symptomatic. Eighteen year follow-up: the Framingham study. Am J Cardiol 32:1–7PubMedCrossRefGoogle Scholar
  54. 54.
    Martin S, Schramm W, Schneider B et al (2007) Epidemiology of complications and total treatment costs from diagnosis of Type 2 diabetes in Germany (ROSSO 4). Exp Clin Endocrinol Diabetes 115:495–501PubMedCrossRefGoogle Scholar
  55. 55.
    Mashour GA, Kheterpal S, Vanaharam V et al (2008) The extended Mallampati score and a diagnosis of diabetes mellitus are predictors of difficult laryngoscopy in the morbidly obese. Anesth Analg 107:1919–1923PubMedCrossRefGoogle Scholar
  56. 56.
    Meisinger C, Strassburger K, Heier M et al (2010) Prevalence of undiagnosed diabetes and impaired glucose regulation in 35–59-year-old individuals in Southern Germany: the KORA F4 Study. Diabet Med 27:360–362PubMedCrossRefGoogle Scholar
  57. 57.
    Mowat A, Baum J (1971) Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med 284:621–627PubMedCrossRefGoogle Scholar
  58. 58.
    Nadal JL, Fernandez BG, Escobar IC et al (1998) The palm print as a sensitive predictor of difficult laryngoscopy in diabetics. Acta Anaesthesiol Scand 42:199–203PubMedCrossRefGoogle Scholar
  59. 59.
    Nishimura M, Miyamoto K, Suzuki A et al (1989) Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44:251–257PubMedCrossRefGoogle Scholar
  60. 60.
    Ono T, Kobayashi J, Sasako Y et al (2002) The impact of diabetic retinopathy on long-term outcome following coronary artery bypass graft surgery. J Am Coll Cardiol 40:428–436PubMedCrossRefGoogle Scholar
  61. 61.
    Ouattara A, Lecomte P, Le Manach Y et al (2005) Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103:687–694PubMedCrossRefGoogle Scholar
  62. 62.
    Page MM, Watkins PJ (1978) Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet 1:14–16PubMedCrossRefGoogle Scholar
  63. 63.
    Patton N, Aslam T, Macgillivray T et al (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348PubMedCrossRefGoogle Scholar
  64. 64.
    Peleg AY, Weerarathna T, McCarthy JS et al (2007) Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev 23:3–13PubMedCrossRefGoogle Scholar
  65. 65.
    Preiser JC, Devos P, Ruiz-Santana S et al (2009) A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35:1738–1748PubMedCrossRefGoogle Scholar
  66. 66.
    Rassias AJ, Marrin CA, Arruda J et al (1999) Insulin infusion improves neutrophil function in diabetic cardiac surgery patients. Anesth Analg 88:1011–1016PubMedGoogle Scholar
  67. 67.
    Rathmann W, Haastert B, Icks A et al (2003) High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000. Diabetologia 46:182–189PubMedGoogle Scholar
  68. 68.
    Raucoules-Aime M, Labib Y, Levraut J et al (1996) Use of i.v. insulin in well-controlled non-insulin-dependent diabetics undergoing major surgery. Br J Anaesth 76:198–202PubMedCrossRefGoogle Scholar
  69. 69.
    Reissell E, Orko R, Maunuksela EL et al (1990) Predictability of difficult laryngoscopy in patients with long-term diabetes mellitus. Anaesthesia 45:1024–1027PubMedCrossRefGoogle Scholar
  70. 70.
    Rose DK, Cohen MM, Wigglesworth DF et al (1994) Critical respiratory events in the postanesthesia care unit. Patient, surgical, and anesthetic factors. Anesthesiology 81:410–418PubMedCrossRefGoogle Scholar
  71. 71.
    Rosenbloom AL, Silverstein JH, Lezotte DC et al (1981) Limited joint mobility in childhood diabetes mellitus indicates increased risk for microvascular disease. N Engl J Med 305:191–194PubMedCrossRefGoogle Scholar
  72. 72.
    Rothhammer A (1998) Tissue oxygenation: physiological and pathophysiologic aspects in intensive care. Anasthesiol Intensivmed Notfallmed Schmerzther 33(Suppl 2):54–59CrossRefGoogle Scholar
  73. 73.
    Saitoh Y, Hattori H, Sanbe N et al (2005) Delayed recovery of vecuronium neuromuscular block in diabetic patients during sevoflurane anesthesia. Can J Anaesth 52:467–473PubMedCrossRefGoogle Scholar
  74. 74.
    Simmons RK, Coleman RL, Price HC et al (2009) Performance of the UK prospective diabetes study risk engine and the Framingham risk equations in estimating cardiovascular disease in the EPIC- Norfolk Cohort. Diabetes Care 32:708–713PubMedCrossRefGoogle Scholar
  75. 75.
    Sobotka PA, Liss HP, Vinik AI (1986) Impaired hypoxic ventilatory drive in diabetic patients with autonomic neuropathy. J Clin Endocrinol Metab 62:658–663PubMedCrossRefGoogle Scholar
  76. 76.
    Tantucci C, Bottini P, Fiorani C et al (2001) Cerebrovascular reactivity and hypercapnic respiratory drive in diabetic autonomic neuropathy. J Appl Physiol 90:889–896PubMedGoogle Scholar
  77. 77.
    Tantucci C, Scionti L, Bottini P et al (1997) Influence of autonomic neuropathy of different severities on the hypercapnic drive to breathing in diabetic patients. Chest 112:145–153PubMedCrossRefGoogle Scholar
  78. 78.
    Thorell A, Efendic S, Gutniak M et al (1993) Development of postoperative insulin resistance is associated with the magnitude of operation. Eur J Surg 159:593–599PubMedGoogle Scholar
  79. 79.
    Thorell A, Nygren J, Ljungqvist O (1999) Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care 2:69–78PubMedCrossRefGoogle Scholar
  80. 80.
    Van Den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367CrossRefGoogle Scholar
  81. 81.
    Venn RM, Bryant A, Hall GM et al (2001) Effects of dexmedetomidine on adrenocortical function, and the cardiovascular, endocrine and inflammatory responses in post-operative patients needing sedation in the intensive care unit. Br J Anaesth 86:650–656PubMedCrossRefGoogle Scholar
  82. 82.
    Vinik AI, Maser RE, Mitchell BD et al (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579PubMedCrossRefGoogle Scholar
  83. 83.
    Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397PubMedCrossRefGoogle Scholar
  84. 84.
    Warner ME, Contreras MG, Warner MA et al (1998) Diabetes mellitus and difficult laryngoscopy in renal and pancreatic transplant patients. Anesth Analg 86:516–519PubMedGoogle Scholar
  85. 85.
    Wickley PJ, Shiga T, Murray PA et al (2007) Propofol modulates Na+-Ca2+ exchange activity via activation of protein kinase C in diabetic cardiomyocytes. Anesthesiology 106:302–311PubMedCrossRefGoogle Scholar
  86. 86.
    Wicklmayr M, Rett K, Dietze G et al (1988) Comparison of metabolic clearance rates of MCT/LCT and LCT emulsions in diabetics. JPEN J Parenter Enteral Nutr 12:68–71PubMedCrossRefGoogle Scholar
  87. 87.
    Williams JG, Morris AI, Hayter RC et al (1984) Respiratory responses of diabetics to hypoxia, hypercapnia, and exercise. Thorax 39:529–534PubMedCrossRefGoogle Scholar
  88. 88.
    Yki-Jarvinen H (1994) Pathogenesis of non-insulin-dependent diabetes mellitus. Lancet 343:91–95PubMedCrossRefGoogle Scholar
  89. 89.
    Zander JF, Risse A (2009) Peri-operative adjustment and treatment of diabetes mellitus. Orthopade 38:818–827PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Pestel
    • 1
  • D. Closhen
    • 1
  • A. Zimmermann
    • 2
  • C. Werner
    • 1
  • M.M. Weber
    • 2
  1. 1.Klinik für AnästhesiologieUniversitätsmedizin der Johannes-Gutenberg UniversitätMainzDeutschland
  2. 2.1. Medizinische Klinik und Poliklinik, Schwerpunkt Endokrinologie und StoffwechselerkrankungenUniversitätsmedizin MainzMainzDeutschland

Personalised recommendations