Der Anaesthesist

, Volume 61, Issue 7, pp 574–587

Management von Patienten mit pulmonaler Hypertonie

  • B. Preckel
  • S. Eberl
  • J. Fräßdorf
  • M.W. Hollmann
Leitthema

Zusammenfassung

Aufgrund der gesteigerten Lebenserwartung der Patienten mit pulmonaler Hypertonie (PH) werden auch primär nicht in der Kardioanästhesie tätige Anästhesisten häufiger mit diesen Patienten konfrontiert werden. Hämodynamisches Ziel in der perioperativen Phase ist es, einen Anstieg des pulmonalvaskulären Widerstands (PVR) zu vermeiden und ggf. den erhöhten PVR zu senken. Akute Steigerungen eines bereits chronisch erhöhten PVR können durch Hypoxie, Hyperkapnie, Acidose, Hypothermie, erhöhten Sympathikotonus sowie endogene und exogene pulmonale Vasokonstriktoren entstehen. Die frühzeitige Erkennung und Behandlung dieser Veränderungen sind daher lebensrettend bei den betroffenen Patienten. Medikamentöse Maßnahmen zur perioperativen Senkung des PVR umfassen die Gabe pulmonaler Vasodilatatoren wie Sauerstoff, Prostazyklinen (Epoprostenol, Iloprost), Phosphodiesterase-III-Inhibitoren (Milrinon) und Phosphodiesterase-V-Inhibitoren (Sildenafil) sowie Nitraten und Stickstoffmonoxid. Dabei ist im Rahmen einer selektiven pulmonalen Vasodilatation eine inhalative Applikation pulmonaler Vasodilatatoren einer i.v.-Verabreichung vorzuziehen. Neue Applikationsformen wie inhalatives Iloprost, inhalatives Milrinon und i.v.-Sildenafil können auch in kleineren Anästhesieabteilungen mit wenig technischem Aufwand leicht zur Verfügung gestellt werden.

Schlüsselwörter

Pulmonalvaskulärer Widerstand Vasodilatatoren Infusionen, intravenös Inhalation von Medikamenten Ventrikuläre Dysfunktion 

Management of patients with pulmonary hypertension

Abstract

Due to the increased survival of patients with pulmonary hypertension, even non-cardiac anesthesiologists will see these patients more frequently for anesthesia. The hemodynamic goal in the perioperative period is to avoid an increase in pulmonary vascular resistance (PVR) and to reduce a possibly pre-existing elevated PVR. Acute increases of chronically elevated PVR may result from hypoxia, hypercapnia, acidosis, hypothermia, elevated sympathetic output and also release of endogenous or application of exogenous pulmonary vasoconstrictors. Early recognition and treatment of these changes might be life saving in these patients. Drug interventions to perioperatively reduce PVR include administration of pulmonary vasodilators, such as oxygen, prostacyclines (epoprostenol, iloprost), phosphodiesterase III (milrinone) and V (sildenafil) inhibitors, as well as nitrates and nitric oxide. Along with the concept of selective pulmonary vasodilation inhalative administration of pulmonary vasodilators has benefits compared to intravenous administration. New therapeutic strategies, such as inhalational iloprost, inhalational milrinone and intravenous sildenafil can be introduced without significant technical support even in smaller departments.

Keywords

Pulmonary vascular resistance Vasodilator agents Infusions, intravenous Drug inhalation Ventricular dysfunction 

Literatur

  1. 1.
    Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436PubMedCrossRefGoogle Scholar
  2. 2.
    Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894PubMedCrossRefGoogle Scholar
  3. 3.
    Williams GD, Maan HA, Ramamoorthy CH et al (2010) Perioperative complications in children with pulmonary hypertension undergoing general anesthesia with ketamine. Paediatr Anaesth 20:28–37PubMedCrossRefGoogle Scholar
  4. 4.
    Price L, Wort S, Finney S et al (2010) Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care 14:R169PubMedCrossRefGoogle Scholar
  5. 5.
    Galiè N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 30:2493–2537PubMedCrossRefGoogle Scholar
  6. 6.
    Simonneau G, Robbins IM, Beghetti M et al (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54:S43–S54PubMedCrossRefGoogle Scholar
  7. 7.
    Gabbay E, Yeow W, Playford D (2007) Pulmonary arterial hypertension (PAH) is a common cause of pulmonary hypertension (PH) in an unselected population: the Armadale echocardiography study. Am J Respir Crit Care Med 175:A713–A714Google Scholar
  8. 8.
    Humbert M, Sitbon O, Chaouat A et al (2006) Pulmonary arterial hypertension in France. Am J Respir Crit Care Med 173:1023–1030PubMedCrossRefGoogle Scholar
  9. 9.
    Peacock AJ, Murphy NF, McMurray JJ et al (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30:104–109PubMedCrossRefGoogle Scholar
  10. 10.
    Benza RL, Miller DP, Gomberg-Maitland M et al (2010) Predicting survival in pulmonary arterial hypertension. Circulation 122:164–172PubMedCrossRefGoogle Scholar
  11. 11.
    Keogh A, Strange G, Kotlyar E et al (2011) Survival after the initiation of combination therapy in patients with pulmonary arterial hypertension: an Australian collaborative report. Intern Med J 41:235–244PubMedCrossRefGoogle Scholar
  12. 12.
    Badesch DB, Champion HC, Gomez Sanchez MA et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54:S55–S66PubMedCrossRefGoogle Scholar
  13. 13.
    Oudiz RJ (2007) Pulmonary hypertension associated with left-sided heart disease. Clin Chest Med 28:233–241PubMedCrossRefGoogle Scholar
  14. 14.
    Vahanian A, Baumgartner H, Bax J et al (2007) Guidelines on the management of valvular heart disease. Eur Heart J 28:230–268PubMedGoogle Scholar
  15. 15.
    Chaouat A, Bugnet AS, Kadaoui N et al (2005) Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:189–194PubMedCrossRefGoogle Scholar
  16. 16.
    Lettieri CJ, Nathan SD, Barnett SD et al (2006) Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 129:746–752PubMedCrossRefGoogle Scholar
  17. 17.
    Reich DL, Bodian CA, Krol M et al (1999) Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth Analg 89:814–822PubMedGoogle Scholar
  18. 18.
    Price LC, Montani D, Jais X et al (2010) Noncardiothoracic nonobstetric surgery in mild-to-moderate pulmonary hypertension. Eur Respir J 35:1294–1302PubMedCrossRefGoogle Scholar
  19. 19.
    Kaw R, Pasupuleti V, Deshpande A et al (2011) Pulmonary hypertension: an important predictor of outcomes in patients undergoing non-cardiac surgery. Respir Med 105:619–624PubMedCrossRefGoogle Scholar
  20. 20.
    Ramakrishna G, Sprung J, Ravi BS et al (2005) Impact of pulmonary hypertension on the outcomes of noncardiac surgery: predictors of perioperative morbidity and mortality. J Am Coll Cardiol 45:1691–1699PubMedCrossRefGoogle Scholar
  21. 21.
    Lai HC, Lai HC, Wang KY et al (2007) Severe pulmonary hypertension complicates postoperative outcome of non-cardiac surgery. Br J Anaesth 99:184–190PubMedCrossRefGoogle Scholar
  22. 22.
    Memtsoudis SG, Ma Y, Chiu YL et al (2010) Perioperative mortality in patients with pulmonary hypertension undergoing major joint replacement. Anesth Analg 111:1110–1116PubMedCrossRefGoogle Scholar
  23. 23.
    McLaughlin VV, Archer SL, Badesch DB et al (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension. Circulation 119:2250–2294PubMedCrossRefGoogle Scholar
  24. 24.
    Gomberg-Maitland M, Dufton C, Oudiz RJ, Benza RL (2011) Compelling evidence of long-term outcomes in pulmonary arterial hypertension? A clinical perspective. J Am Coll Cardiol 57:1053–1061PubMedCrossRefGoogle Scholar
  25. 25.
    Sahara M, Takahashi T, Imai Y et al (2006) New insights in the treatment strategy for pulmonary arterial hypertension. Cardiovasc Drugs Ther 20:377–386PubMedCrossRefGoogle Scholar
  26. 26.
    McLaughlin VV, Benza RL, Rubin LJ et al (2010) Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol 55:1915–1922PubMedCrossRefGoogle Scholar
  27. 27.
    Pritts CD, Pearl RG (2010) Anesthesia for patients with pulmonary hypertension. Curr Opin Anaesthesiol 23:411–416PubMedCrossRefGoogle Scholar
  28. 28.
    Subramaniam K, Yared JP (2007) Management of pulmonary hypertension in the operating room. Semin Cardiothorac Vasc Anesth 11:119–136PubMedCrossRefGoogle Scholar
  29. 29.
    Brimioulle S, Vachiéry JL, Brichant JF et al (1997) Sympathetic modulation of hypoxic pulmonary vasoconstriction in intact dogs. Cardiovasc Res 34:384–392PubMedCrossRefGoogle Scholar
  30. 30.
    Rex S, Missant C, Segers P, Wouters PF (2007) Thoracic epidural anesthesia impairs the hemodynamic response to acute pulmonary hypertension by deteriorating right ventricular-pulmonary arterial coupling. Crit Care Med 35:222–229PubMedCrossRefGoogle Scholar
  31. 31.
    Missant C, Rex S, Claus P et al (2011) Thoracic epidural anaesthesia disrupts the protective mechanism of homeometric autoregulation during right ventricular pressure overload by cardiac sympathetic blockade: a randomised controlled animal study. Eur J Anaesthesiol 28:535–543PubMedCrossRefGoogle Scholar
  32. 32.
    Fischer LG, Aken HV, Bürkle H (2003) Management of pulmonary hypertension: physiological and pharmacological considerations for anesthesiologists. Anesth Analg 96:1603–1616PubMedCrossRefGoogle Scholar
  33. 33.
    Wiedemann K, Diestelhorst C (1995) The effect of sedation on pulmonary function. Anaesthesist 44:588–593Google Scholar
  34. 34.
    Hickey PR, Hansen DD, Strafford M et al (1986) Pulmonary and systemic hemodynamic effects of nitrous oxide in infants with normal and elevated pulmonary vascular resistance. Anesthesiology 65:374–378PubMedCrossRefGoogle Scholar
  35. 35.
    Kerbaul F, Rondelet B, Motte S et al (2004) Isoflurane and desflurane impair right ventricular-pulmonary arterial coupling in dogs. Anesthesiology 101:1357–1362PubMedCrossRefGoogle Scholar
  36. 36.
    Lennon PF, Murray PA (1996) Attenuated hypoxic pulmonary vasoconstriction during isoflurane anesthesia is abolished by cyclooxygenase inhibition in chronically instrumented dogs. Anesthesiology 84:404–414PubMedCrossRefGoogle Scholar
  37. 37.
    Liu R, Ueda M, Okazaki N, Ishibe Y (2001) Role of potassium channels in isoflurane- and sevoflurane-induced attenuation of hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. Anesthesiology 95:939–946PubMedCrossRefGoogle Scholar
  38. 38.
    Bjertnaes LJ (1977) Hypoxia-induced vasoconstriction in isolated perfused lungs exposed to injectable or inhalation anesthetics. Acta Anaesthesiol Scand 21:133–147PubMedCrossRefGoogle Scholar
  39. 39.
    Fox C, Kalarickal PL, Yarborough MJ, Jin JY (2008) Perioperative management including new pharmacological vistas for patients with pulmonary hypertension for noncardiac surgery. Curr Opin Anaesthesiol 21:467–472PubMedCrossRefGoogle Scholar
  40. 40.
    Bogert LW, Wesseling KH, Schraa O et al (2010) Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65:1119–1125PubMedCrossRefGoogle Scholar
  41. 41.
    Schrijen FV, Henriquez A, Carton D et al (1989) Pulmonary vascular resistance rises with lung volume on exercise in obstructed airflow disease. Clin Physiol 9:143–150PubMedCrossRefGoogle Scholar
  42. 42.
    Strumpher J, Jacobsohn E (2011) Pulmonary hypertension and right ventricular dysfunction: physiology and perioperative management. J Cardiothorac Vasc Anesth 25:687–704PubMedCrossRefGoogle Scholar
  43. 43.
    Thomas LJ, Griffo ZJ, Roos A (1961) Effect of negative-pressure inflation of the lung on pulmonary vascular resistance. J Appl Physiol 16:451–456PubMedGoogle Scholar
  44. 44.
    Inglessis I, Shin JT, Lepore JJ et al (2004) Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock. J Am Coll Cardiol 44:793–798PubMedCrossRefGoogle Scholar
  45. 45.
    Griffiths MJD, Evans TW (2005) Inhaled nitric oxide therapy in adults. N Engl J Med 353:2683–2695PubMedCrossRefGoogle Scholar
  46. 46.
    Gerlach H, Rossaint R, Pappert D, Falke KJ (1993) Time-course and dose-response of nitric oxide inhalation for systemic oxygenation and pulmonary hypertension in patients with adult respiratory distress syndrome. Eur J Clin Invest 23:499–502PubMedCrossRefGoogle Scholar
  47. 47.
    Hakim TS (1994) Flow-induced release of EDRF in the pulmonary vasculature: site of release and action. Am J Physiol Heart Circ Physiol 267:H363–369Google Scholar
  48. 48.
    Pagnamenta A, Fesler P, Vandinivit A et al (2003) Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit Care Med 31:1140–1146PubMedCrossRefGoogle Scholar
  49. 49.
    Missant C, Rex S, Segers P, Wouters PF (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715PubMedCrossRefGoogle Scholar
  50. 50.
    Russ MA, Prondzinsky R, Carter JM et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med 37:3017–3023PubMedCrossRefGoogle Scholar
  51. 51.
    Papp Z, Edes I, Fruhwald S et al (2011) Levosimendan: molecular mechanisms and clinical implications. Consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. DOI 10.1016/j.ijcard.2011.07.022Google Scholar
  52. 52.
    Kleber FX, Bollmann T, Borst MM et al (2009) Repetitive dosing of intravenous levosimendan improves pulmonary hemodynamics in patients with pulmonary hypertension: results of a pilot study. J Clin Pharmacol 49:109–115PubMedGoogle Scholar
  53. 53.
    Buckley MS, Feldman JP (2007) Nebulized milrinone use in a pulmonary hypertensive crisis. Pharmacotherapy 27:1763–1766PubMedCrossRefGoogle Scholar
  54. 54.
    Wang H, Gong M, Zhou B, Dai A (2009) Comparison of inhaled and intravenous milrinone in patients with pulmonary hypertension undergoing mitral valve surgery. Adv Ther 26:462–468PubMedCrossRefGoogle Scholar
  55. 55.
    Lamarche Y, Malo O, Thorin E et al (2005) Inhaled but not intravenous milrinone prevents pulmonary endothelial dysfunction after cardiopulmonary bypass. J Thorac Cardiovasc Surg 130:83–92PubMedCrossRefGoogle Scholar
  56. 56.
    Sablotzki A, Starzmann W, Scheubel R et al (2005) Selective pulmonary vasodilation with inhaled aerosolized milrinone in heart transplant candidates. Can J Anaesth 52:1076–1082PubMedCrossRefGoogle Scholar
  57. 57.
    Lamarche Y, Perrault LP, Maltais S et al (2007) Preliminary experience with inhaled milrinone in cardiac surgery. Eur J Cardiothorac Surg 31:1081–1087PubMedCrossRefGoogle Scholar
  58. 58.
    Haraldsson A, Kieler-Jensen N, Ricksten SE (2001) The additive pulmonary vasodilatory effects of inhaled prostacyclin and inhaled milrinone in postcardiac surgical patients with pulmonary hypertension. Anesth Analg 93:1439–1445CrossRefGoogle Scholar
  59. 59.
    Buckley MS, Staib RL, Wicks LM, Feldman JP (2010) Phosphodiesterase-5 inhibitors in management of pulmonary hypertension: safety, tolerability, and efficacy. Drug Healthc Patient Saf 2:151–161PubMedGoogle Scholar
  60. 60.
    Corbin J, Rannels S, Neal D et al (2003) Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin 19:747–752PubMedCrossRefGoogle Scholar
  61. 61.
    Andersen A, Nielsen JM, Peters CD et al (2008) Effects of phosphodiesterase-5 inhibition by sildenafil in the pressure overloaded right heart. Eur J Heart Fail 10:1158–1165PubMedCrossRefGoogle Scholar
  62. 62.
    Nagendran J, Archer SL, Soliman D et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248PubMedCrossRefGoogle Scholar
  63. 63.
    Botha P, Parry G, Dark JH, MacGowan GA (2009) Acute hemodynamic effects of intravenous sildenafil citrate in congestive heart failure: comparison of phosphodiesterase type-3 and -5 inhibition. J Heart Lung Transplant 28:676–682PubMedCrossRefGoogle Scholar
  64. 64.
    Buckley MS, Wicks LM, Staib RL et al (2011) Pharmacokinetic evaluation of ambrisentan. Expert Opin Drug Metab Toxicol 7:371–380PubMedCrossRefGoogle Scholar
  65. 65.
    Oudiz RJ, Farber HW (2009) Dosing considerations in the use of intravenous prostanoids in pulmonary arterial hypertension: an experience-based review. Am Heart J 157:625–635PubMedCrossRefGoogle Scholar
  66. 66.
    McLaughlin VV, Shillington A, Rich S (2002) Survival in primary pulmonary hypertension. Circulation 106:1477–1482PubMedCrossRefGoogle Scholar
  67. 67.
    Opitz CF, Wensel R, Winkler J et al (2005) Clinical efficacy and survival with first-line inhaled iloprost therapy in patients with idiopathic pulmonary arterial hypertension. Eur Heart J 26:1895–1902PubMedCrossRefGoogle Scholar
  68. 68.
    Hoeper MM, Schwarze M, Ehlerding S et al (2000) Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 342:1866–1870PubMedCrossRefGoogle Scholar
  69. 69.
    Winterhalter M, Simon A, Fischer S et al (2008) Comparison of inhaled iloprost and nitric oxide in patients with pulmonary hypertension during weaning from cardiopulmonary bypass in cardiac surgery: a prospective randomized trial. J Cardiothorac Vasc Anesth 22:406–413PubMedCrossRefGoogle Scholar
  70. 70.
    Theodoraki K, Rellia P, Thanopoulos A et al (2002) Inhaled iloprost controls pulmonary hypertension after cardiopulmonary bypass. Can J Anaesth 49:963–967PubMedCrossRefGoogle Scholar
  71. 71.
    Baysal A, Bilsel S, Bulbul OG et al (2006) Comparison of the usage of intravenous iloprost and nitroglycerin for pulmonary hypertension during valvular heart surgery. Heart Surg Forum 9:536–542CrossRefGoogle Scholar
  72. 72.
    Rex S, Schaelte G, Metzelder S et al (2008) Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: a prospective, randomized-controlled trial. Acta Anaesthesiol Scand 52:65–72PubMedCrossRefGoogle Scholar
  73. 73.
    Schroeder RA, Wood GL, Plotkin JS, Kuo PC (2000) Intraoperative use of inhaled PGI2 for acute pulmonary hypertension and right ventricular failure. Anaesth Analg 91:291–295Google Scholar
  74. 74.
    Fraisse A, Butrous G, Taylor M et al (2011) Intravenous sildenafil for postoperative pulmonary hypertension in children with congenital heart disease. Intensive Care Med 37:502–509PubMedCrossRefGoogle Scholar
  75. 75.
    Vachiery JL, Huez S, Gillies H et al (2011) Safety, tolerability and pharmacokinetics of an intravenous bolus of sildenafil in patients with pulmonary arterial hypertension. Br J Clin Pharmacol 71:289–292PubMedCrossRefGoogle Scholar
  76. 76.
    Lee JE, Hillier SC, Knoderer CA (2008) Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Intensive Care Med 23:329–334PubMedCrossRefGoogle Scholar
  77. 77.
    Namachivayam P, Theilen U, Butt WW et al (2006) Sildenafil prevents rebound pulmonary hypertension after withdrawal of nitric oxide in children. Am J Respir Crit Care Med 174:1042–1047PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. Preckel
    • 1
  • S. Eberl
    • 1
  • J. Fräßdorf
    • 1
  • M.W. Hollmann
    • 1
  1. 1.Department of AnesthesiologyAcademic Medical Center AMCAmsterdamNiederlande

Personalised recommendations