Der Anaesthesist

, Volume 61, Issue 5, pp 424–436

Postreanimationssyndrom

Rolle der Entzündung nach Herz-Kreislauf-Stillstand
  • A. Schneider
  • M. Albertsmeier
  • B.W. Böttiger
  • P. Teschendorf
Intensivmedizin

Zusammenfassung

Der Herz-Kreislauf-Stillstand mit kardiopulmonaler Reanimation bewirkt ein Ischämie-Reperfusion-Syndrom des gesamten Körpers. Einerseits liegt eine lokalisierte Schädigung besonders empfindlicher Organe wie des Gehirns und des Herzens vor; andererseits zeigen sich auch systemische Folgen. An erster Stelle steht hier die generalisierte Aktivierung von Entzündungsreaktionen. Damit gleicht das Krankheitsbild in zahlreichen Aspekten der Sepsis. Die systemische Entzündung verstärkt die Organschäden durch Störungen der Makro- und Mikrozirkulation, durch Stoffwechseldysbalancen sowie infolge direkter leukozytenvermittelter Gewebszerstörung. Der vorliegende Beitrag gibt einen Überblick über die Rolle der Entzündung nach Herz-Kreislauf-Stillstand und stellt ausführlich die zugrunde liegenden Mechanismen, ihr klinisches Erscheinungsbild und mögliche therapeutische Ansätze vor.

Schlüsselwörter

Kardiopulmonale Reanimation Ischämie Reperfusion Sepsis Zytokine 

Post-resuscitation syndrome

Role of inflammation after cardiac arrest

Abstract

Cardiac arrest with subsequent cardiopulmonary resuscitation causes an ischemic reperfusion syndrome of the whole body resulting in localized damage of particularly sensitive organs, such as the brain and heart, together with systemic sequelae. The main factor is a generalized activation of inflammatory reactions resulting in symptoms similar in many aspects to those of sepsis. Systemic inflammation strengthens organ damage due to disorders in the macrocirculation and microcirculation due to metabolic imbalance as well as the effects of direct leukocyte transmitted tissue destruction. The current article gives an overview on the role of inflammation following cardiac arrest and presents in detail the underlying mechanisms, the clinical symptoms and possible therapeutic approaches.

Keywords

Cardiopulmonary resuscitation Ischemia Reperfusion Sepsis Cytokines 

Literatur

  1. 1.
    Adrie C, Adib-Conquy M, Laurent I et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a „sepsis-like“ syndrome. Circulation 106:562–568PubMedGoogle Scholar
  2. 2.
    Adrie C, Monchi M, Laurent I et al (2005) Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol 46:21–28PubMedGoogle Scholar
  3. 3.
    Akriotis V, Biggar WD (1985) The effects of hypothermia on neutrophil function in vitro. J Leukoc Biol 37:51–61PubMedGoogle Scholar
  4. 4.
    Ames A III, Wright RL, Kowada M et al (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52:437–453PubMedGoogle Scholar
  5. 5.
    Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80PubMedGoogle Scholar
  6. 6.
    Balan IS, Fiskum G, Hazelton J et al (2006) Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke 37:3008–3013PubMedGoogle Scholar
  7. 7.
    Berdowski J, Berg RA, Tijssen JGP, Koster RW (2010) Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81:1479–1487PubMedGoogle Scholar
  8. 8.
    Bernard GR, Vincent JL, Laterre PF et al (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709PubMedGoogle Scholar
  9. 9.
    Bernard S, Buist M, Monteiro O, Smith K (2003) Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation 56:9–13PubMedGoogle Scholar
  10. 10.
    Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563PubMedGoogle Scholar
  11. 11.
    Bernhard M, Matthes G, Kanz KG et al (2011) Notfallnarkose, Atemwegsmanagement und Beatmung beim Polytrauma: Hintergrund und Kernaussagen der interdisziplinären S3-Leitlinie Polytrauma. Anaesthesist 60:1027–1040PubMedGoogle Scholar
  12. 12.
    Booth G, Stalker TJ, Lefer AM, Scalia R (2001) Elevated ambient glucose induces acute inflammatory events in the microvasculature: effects of insulin. Am J Physiol Endocrinol Metab 280:E848–E856PubMedGoogle Scholar
  13. 13.
    Böttiger BW, Arntz HR, Chamberlain DA et al (2008) Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N Engl J Med 359:2651–2662PubMedGoogle Scholar
  14. 14.
    Böttiger BW, Böhrer H, Böker T et al (1996) Platelet factor 4 release in patients undergoing cardiopulmonary resuscitation – can reperfusion be impaired by platelet activation? Acta Anaesthesiol Scand 40:631–635PubMedGoogle Scholar
  15. 15.
    Böttiger BW, Grabner C, Bauer H et al (1999) Long term outcome after out-of-hospital cardiac arrest with physician staffed emergency medical services: the Utstein style applied to a midsized urban/suburban area. Heart 82:674–679PubMedGoogle Scholar
  16. 16.
    Böttiger BW, Motsch J, Böhrer H et al (1995) Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation 92:2572–2578PubMedGoogle Scholar
  17. 17.
    Böttiger BW, Motsch J, Braun V et al (2002) Marked activation of complement and leukocytes and an increase in the concentrations of soluble endothelial adhesion molecules during cardiopulmonary resuscitation and early reperfusion after cardiac arrest in humans. Crit Care Med 30:2473–2480PubMedGoogle Scholar
  18. 18.
    Böttiger BW, Schmitz B, Wiessner C et al (1998) Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab 18:1077–1087PubMedGoogle Scholar
  19. 19.
    Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139PubMedGoogle Scholar
  20. 20.
    Burne-Taney MJ, Kofler J, Yokota N et al (2003) Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. Am J Physiol Renal Physiol 285:F87–F94PubMedGoogle Scholar
  21. 21.
    Buunk G, Hoeven JG van der, Meinders AE (1997) Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke 28:1569–1573PubMedGoogle Scholar
  22. 22.
    Caceres MJ, Schleien CL, Kuluz JW et al (1995) Early endothelial damage and leukocyte accumulation in piglet brains following cardiac arrest. Acta Neuropathol 90:582–591PubMedGoogle Scholar
  23. 23.
    Chai Z, Gatti S, Toniatti C et al (1996) Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1β: a study on IL-6-deficient mice. J Exp Med 183:311–316PubMedGoogle Scholar
  24. 24.
    Chen J, Nagayama T, Jin K et al (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18:4914–4928PubMedGoogle Scholar
  25. 25.
    Coimbra C, Boris-Möller F, Drake M, Wieloch T (1996) Diminished neuronal damage in the rat brain by late treatment with the antipyretic drug dipyrone or cooling following cerebral ischemia. Acta Neuropathol 92:447–453PubMedGoogle Scholar
  26. 26.
    Cooper MS, Stewart PM (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348:727–734PubMedGoogle Scholar
  27. 27.
    Corbett RJT, Laptook AR (1993) 31P NMR relaxation does not affect the quantitation of changes in phosphocreatine, inorganic phosphate, and ATP measured in vivo during complete ischemia in swine brain. J Neurochem 61:144–149PubMedGoogle Scholar
  28. 28.
    Crowell JW, Sharpe GP, Lambright RL, Read WL (1955) The mechanism of death after resuscitation following acute circulatory failure. Surgery 38:696–702PubMedGoogle Scholar
  29. 29.
    De Beaux AC, Goldie AS, Ross JA et al (1996) Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 83:349–353Google Scholar
  30. 30.
    De Jong MFC, Beishuizen A, Jong MJ de et al (2008) The pituitary-adrenal axis is activated more in non-survivors than in survivors of cardiac arrest, irrespective of therapeutic hypothermia. Resuscitation 78:281–288Google Scholar
  31. 31.
    Deibert DC, DeFronzo RA (1980) Epinephrine-induced insulin resistance in man. J Clin Invest 65:717–721PubMedGoogle Scholar
  32. 32.
    Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology 57:1428–1434Google Scholar
  33. 33.
    Ensinger H, Träger K, Geisser W et al (1994) Glucose and urea production and leucine, ketoisocaproate and alanine fluxes at supraphysiological plasma adrenaline concentrations in volunteers. Intensive Care Med 20:113–118PubMedGoogle Scholar
  34. 34.
    European Resuscitation Council (2010) European Resuscitation Council guidelines for resuscitation 2010. Resuscitation 81:1219–1451Google Scholar
  35. 35.
    Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med 21:132–141PubMedGoogle Scholar
  36. 36.
    Furuya K, Takeda H, Azhar S et al (2001) Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 32:2665–2674PubMedGoogle Scholar
  37. 37.
    Gaieski DF, Band RA, Abella BS et al (2009) Early goal-directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 80:418–424PubMedGoogle Scholar
  38. 38.
    Gajic O, Festic E, Afessa B (2004) Infectious complications in survivors of cardiac arrest admitted to the medical intensive care unit. Resuscitation 60:65–69PubMedGoogle Scholar
  39. 39.
    Gando S, Kameue T, Nanzaki S et al (1997) Platelet activation with massive formation of thromboxane A2 during and after cardiopulmonary resuscitation. Intensive Care Med 23:71–76PubMedGoogle Scholar
  40. 40.
    Gando S, Nanzaki S, Morimoto Y et al (1999) Alterations of soluble L- and P-selectins during cardiac arrest and CPR. Intensive Care Med 25:588–593PubMedGoogle Scholar
  41. 41.
    Gando S, Nanzaki S, Morimoto Y et al (1999) Tissue factor and tissue factor pathway inhibitor levels during and after cardiopulmonary resuscitation. Thromb Res 96:107–113PubMedGoogle Scholar
  42. 42.
    Gando S, Nanzaki S, Morimoto Y et al (2000) Out-of-hospital cardiac arrest increases soluble vascular endothelial adhesion molecules and neutrophil elastase associated with endothelial injury. Intensive Care Med 26:38–44PubMedGoogle Scholar
  43. 43.
    Gaussorgues P, Gueugniaud PY, Vedrinne JM et al (1988) Bacteremia following cardiac arrest and cardiopulmonary resuscitation. Intensive Care Med 14:575–577PubMedGoogle Scholar
  44. 44.
    Geppert A, Zorn G, Delle Karth G et al (2000) Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med 28:2360–2365PubMedGoogle Scholar
  45. 45.
    Gillardon F, Böttiger B, Schmitz B et al (1997) Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy. Brain Res Mol Brain Res 50:16–22PubMedGoogle Scholar
  46. 46.
    Gräsner JT, Meybohm P, Caliebe A et al (2011) Postresuscitation care with mild therapeutic hypothermia and coronary intervention after out-of-hospital cardiopulmonary resuscitation: a prospective registry analysis. Crit Care 15:R61PubMedGoogle Scholar
  47. 47.
    Grubb NR, Cuthbert D, Cawood P et al (1998) Effect of DC shock on serum levels of total creatine kinase, MB-creatine kinase mass and troponin T. Resuscitation 36:193–199PubMedGoogle Scholar
  48. 48.
    Gustot T, Lemmers A, Louis E et al (2005) Profile of soluble cytokine receptors in Crohn’s disease. Gut 54:488–495PubMedGoogle Scholar
  49. 49.
    Hartveit F, Halleraker B (1970) Intravascular changes in kidneys and lungs after external cardiac massage: a preliminary report. J Pathol 102:54–58PubMedGoogle Scholar
  50. 50.
    Hékimian G, Baugnon T, Thuong M et al (2004) Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock 22:116–119PubMedGoogle Scholar
  51. 51.
    Hekmatpanah J (1973) Cerebral blood flow dynamics in hypotension and cardiac arrest. Neurology 23:174–180PubMedGoogle Scholar
  52. 52.
    Hossmann KA, Sakaki S, Zimmerman V (1977) Cation activities in reversible ischemia of the cat brain. Stroke 8:77–81PubMedGoogle Scholar
  53. 53.
    Hostler D, Callaway CW, Newman DH, D’Cruz B (2007) Thrombin-antithrombin appearance in out-of-hospital cardiac arrest. Prehosp Emerg Care 11:9–13PubMedGoogle Scholar
  54. 54.
    Hu CL, Wei HY, Liu ZY et al (2010) Investigation of the relationship between venticular fibrillation duration and cardiac/neurological damage in a rabbit model of electrically induced arrhythmia. J Trauma 69:1442–1447PubMedGoogle Scholar
  55. 55.
    Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556Google Scholar
  56. 56.
    Ito T, Saitoh D, Takasu A et al (2004) Serum cortisol as a predictive marker of the outcome in patients resuscitated after cardiopulmonary arrest. Resuscitation 62:55–60PubMedGoogle Scholar
  57. 57.
    Jäättelä M, Ilvesmäki V, Voutilainen R et al (1991) Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 128:623–629PubMedGoogle Scholar
  58. 58.
    Jacobshagen C, Pax A, Unsöld BW et al (2009) Effects of large volume, ice-cold intravenous fluid infusion on respiratory function in cardiac arrest survivors. Resuscitation 80:1223–1228PubMedGoogle Scholar
  59. 59.
    Jacobshagen C, Pelster T, Pax A et al (2010) Effects of mild hypothermia on hemodynamics in cardiac arrest survivors and isolated failing human myocardium. Clin Res Cardiol 99:267–276PubMedGoogle Scholar
  60. 60.
    Juffermans NP, Verbon A, Deventer SJ van et al (1998) Tumor necrosis factor and interleukin-1 inhibitors as markers of disease activity of tuberculosis. Am J Respir Crit Care Med 157:1328–1331PubMedGoogle Scholar
  61. 61.
    Kämäräinen A, Virkkunen I, Tenhunen J et al (2009) Prehospital therapeutic hypothermia for comatose survivors of cardiac arrest: a randomized controlled trial. Acta Anaesthesiol Scand 53:900–907PubMedGoogle Scholar
  62. 62.
    Kern KB, Berg RA, Hilwig RW et al (2008) Myocardial cytokine IL-8 and nitric oxide synthase activity during and after resuscitation: preliminary observations in regards to post-resuscitation myocardial dysfunction. Resuscitation 77:401–409PubMedGoogle Scholar
  63. 63.
    Kern KB, Sasaoka T, Higashi H et al (2011) Post-resuscitation myocardial microcirculatory dysfunction is ameliorated with eptifibatide. Resuscitation 82:85–89PubMedGoogle Scholar
  64. 64.
    Kilgannon JH, Jones AE, Shapiro NI et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–2171PubMedGoogle Scholar
  65. 65.
    Kim F, Olsufka M, Longstreth WT Jr et al (2007) Pilot randomized clinical trial of prehospital induction of mild hypothermia in out-of-hospital cardiac arrest patients with a rapid infusion of 4°C normal saline. Circulation 115:3064–3070PubMedGoogle Scholar
  66. 66.
    Kim JJ, Hyun SY, Hwang SY et al (2011) Hormonal responses upon return of spontaneous circulation after cardiac arrest: a retrospective cohort study. Crit Care 15:R53PubMedGoogle Scholar
  67. 67.
    Kim JJ, Lim YS, Shin JH et al (2006) Relative adrenal insufficiency after cardiac arrest: impact on postresuscitation disease outcome. Am J Emerg Med 24:684–688PubMedGoogle Scholar
  68. 68.
    Langhelle A, Tyvold SS, Lexow K et al (2003) In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest. A comparison between four regions in Norway. Resuscitation 56:247–263PubMedGoogle Scholar
  69. 69.
    Larsson PT, Wallén NH, Hjemdahl P (1994) Norepinephrine-induced human platelet activation in vivo is only partly counteracted by aspirin. Circulation 89:1951–1957PubMedGoogle Scholar
  70. 70.
    Laurent I, Adrie C, Vinsonneau C et al (2005) High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol 46:432–437PubMedGoogle Scholar
  71. 71.
    Laurent I, Monchi M, Chiche JD et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116PubMedGoogle Scholar
  72. 72.
    Lavine SD, Hofman FM, Zlokovic BV (1998) Circulating antibody against tumor necrosis factor-alpha protects rat brain from reperfusion injury. J Cereb Blood Flow Metab 18:52–58PubMedGoogle Scholar
  73. 73.
    Lehmberg J, Beck J, Baethmann A, Uhl E (2006) Effect of P-selectin inhibition on leukocyte-endothelium interaction and survival after global cerebral ischemia. J Neurol 253:357–363PubMedGoogle Scholar
  74. 74.
    Lilly (2011) Lilly announces withdrawal of Xigris® following recent clinical trial results. http://newsroom.lilly.com/releasedetail.cfm?ReleaseID= 617602. Zugegriffen: 28. Januar 2012Google Scholar
  75. 75.
    Losert H, Sterz F, Roine RO et al (2008) Strict normoglycaemic blood glucose levels in the therapeutic management of patients within 12 h after cardiac arrest might not be necessary. Resuscitation 76:214–220PubMedGoogle Scholar
  76. 76.
    Love S, Barber R (2001) Expression of P-selectin and intercellular adhesion molecule-1 in human brain after focal infarction or cardiac arrest. Neuropathol Appl Neurobiol 27:465–473PubMedGoogle Scholar
  77. 77.
    Martí-Carvajal AJ, Solà I, Lathyris D, Cardona AF (2011) Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev:CD004388Google Scholar
  78. 78.
    Martin NB, Jamieson A, Tuffin DP (1993) The effect of interleukin-4 on tumour necrosis factor-alpha induced expression of tissue factor and plasminogen activator inhibitor-1 in human umbilical vein endothelial cells. Thromb Haemost 70:1037–1042PubMedGoogle Scholar
  79. 79.
    Mentzelopoulos SD, Zakynthinos SG, Tzoufi M et al (2009) Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med 169:15–24PubMedGoogle Scholar
  80. 80.
    Meybohm P, Gruenewald M, Zacharowski KD et al (2010) Mild hypothermia alone or in combination with anesthetic post-conditioning reduces expression of inflammatory cytokines in the cerebral cortex of pigs after cardiopulmonary resuscitation. Crit Care 14:R21PubMedGoogle Scholar
  81. 81.
    Meyer C, Stumvoll M, Welle S et al (2003) Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab 285:E819–E826PubMedGoogle Scholar
  82. 82.
    Mizushima H, Zhou CJI, Dohi K et al (2002) Reduced postischemic apoptosis in the hippocampus of mice deficient in interleukin-1. J Comp Neurol 448:203–216PubMedGoogle Scholar
  83. 83.
    Müllner M, Hirschl MM, Herkner H et al (1996) Creatine kinase-mb fraction and cardiac troponin T to diagnose acute myocardial infarction after cardiopulmonary resuscitation. J Am Coll Cardiol 28:1220–1225PubMedGoogle Scholar
  84. 84.
    Müllner M, Sterz F, Binder M et al (1997) Blood glucose concentration after cardiopulmonary resuscitation influences functional neurological recovery in human cardiac arrest survivors. J Cereb Blood Flow Metab 17:430–436PubMedGoogle Scholar
  85. 85.
    Mussack T, Biberthaler P, Gippner-Steppert C et al (2001) Early cellular brain damage and systemic inflammatory response after cardiopulmonary resuscitation or isolated severe head trauma: a comparative pilot study on common pathomechanisms. Resuscitation 49:193–199PubMedGoogle Scholar
  86. 86.
    Negovsky VA (1988) Postresuscitation disease. Crit Care Med 16:942–946PubMedGoogle Scholar
  87. 87.
    NICE-SUGAR Study Investigators (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297Google Scholar
  88. 88.
    Niemann JT, Garner D, Lewis RJ (2004) Tumor necrosis factor-α is associated with early postresuscitation myocardial dysfunction. Crit Care Med 32:1753–1758PubMedGoogle Scholar
  89. 89.
    Niemann JT, Youngquist S, Rosborough JP et al (2010) Infliximab attenuates early myocardial dysfunction after resuscitation in a swine cardiac arrest model. Crit Care Med 38:1162–1167PubMedGoogle Scholar
  90. 90.
    Olasveengen TM, Vik E, Kuzovlev A, Sunde K (2009) Effect of implementation of new resuscitation guidelines on quality of cardiopulmonary resuscitation and survival. Resuscitation 80:407–411PubMedGoogle Scholar
  91. 91.
    Oksanen T, Skrifvars MB, Varpula T et al (2007) Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med 33:2093–2100PubMedGoogle Scholar
  92. 92.
    Palabrica T, Lobb R, Furie BC et al (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–851PubMedGoogle Scholar
  93. 93.
    Palmer BS, Hadziahmetovic M, Veci T, Angelos MG (2004) Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation 62:97–106PubMedGoogle Scholar
  94. 94.
    Pene F, Hyvernat H, Mallet V et al (2005) Prognostic value of relative adrenal insufficiency after out-of-hospital cardiac arrest. Intensive Care Med 31:627–633PubMedGoogle Scholar
  95. 95.
    Plomgaard P, Bouzakri K, Krogh-Madsen R et al (2005) Tumor necrosis factor-α induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedGoogle Scholar
  96. 96.
    Qi J, Goralnick S, Kreutzer DL (1997) Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 90:3595–3602PubMedGoogle Scholar
  97. 97.
    Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prävention, Diagnose, Therapie und Nachsorge der Sepsis. Erste Revision der S2k-Leitlinien der Deutschen Sepsis-Gesellschaft e. V. (DSG) und der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI). Anaesthesist 59:347–370PubMedGoogle Scholar
  98. 98.
    Richards EM, Fiskum G, Rosenthal RE et al (2007) Hyperoxic reperfusion after global ischemia decreases hippocampal energy metabolism. Stroke 38:1578–1584PubMedGoogle Scholar
  99. 99.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedGoogle Scholar
  100. 100.
    Rizza RA, Mandarino LJ, Gerich JE (1982) Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. J Clin Endocrinol Metab 54:131–138PubMedGoogle Scholar
  101. 101.
    Schneider A, Popp E, Teschendorf P, Böttiger BW (2008) Therapeutische Hypothermie. Anaesthesist 57:197–208PubMedGoogle Scholar
  102. 102.
    Senden NHM, Jeunhomme TMAA, Heemskerk JWM et al (1998) Factor Xa induces cytokine production and expression of adhesion molecules by human umbilical vein endothelial cells. J Immunol 161:4318–4324PubMedGoogle Scholar
  103. 103.
    Shyu KG, Chang H, Lin CC et al (1997) Concentrations of serum interleukin-8 after successful cardiopulmonary resuscitation in patients with cardiopulmonary arrest. Am Heart J 134:551–556PubMedGoogle Scholar
  104. 104.
    Skulec R, Belohlavek J, Kovarnik T et al (2006) Serum cardiac markers response to biphasic and monophasic electrical cardioversion for supraventricular tachyarrhythmia – a randomised study. Resuscitation 70:423–431PubMedGoogle Scholar
  105. 105.
    Soppi E, Lindroos M, Nikoskelainen J, Kalliomäki JL (1984) Effect of cardiopulmonary resuscitation-induced stress on cell-mediated immunity. Intensive Care Med 10:287–292PubMedGoogle Scholar
  106. 106.
    Spaulding CM, Joly LM, Rosenberg A et al (1997) Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 336:1629–1633PubMedGoogle Scholar
  107. 107.
    Sprung CL, Annane D, Keh D et al (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 358:111–124PubMedGoogle Scholar
  108. 108.
    Sterz F, Leonov Y, Safar P et al (1990) Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke 21:1178–1184PubMedGoogle Scholar
  109. 109.
    Sugano M, Koyanagi M, Tsuchida K et al (2002) In vivo gene transfer of soluble TNF-α receptor 1 alleviates myocardial infarction. FASEB J 16:1421–1422PubMedGoogle Scholar
  110. 110.
    Suk K, Cha S (1999) Thrombin-induced interleukin-8 production and its regulation by interferon-γ and prostaglandin E2 in human monocytic U937 cells. Immunol Lett 67:223–227PubMedGoogle Scholar
  111. 111.
    Sunde K, Pytte M, Jacobsen D et al (2007) Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39PubMedGoogle Scholar
  112. 112.
    Sundgreen C, Larsen FS, Herzog TM et al (2001) Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 32:128–132PubMedGoogle Scholar
  113. 113.
    Suzuki H, Hayashi T, Tojo SJ et al (1999) Anti-P-selectin antibody attenuates rat brain ischemic injury. Neurosci Lett 265:163–166PubMedGoogle Scholar
  114. 114.
    Tanaka E, Yamamoto S, Kudo Y et al (1997) Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. J Neurophysiol 78:891–902PubMedGoogle Scholar
  115. 115.
    Teschendorf P, Albertsmeier M, Vogel P et al (2008) Neurological outcome and inflammation after cardiac arrest – effects of protein C in rats. Resuscitation 79:316–324PubMedGoogle Scholar
  116. 116.
    Teschendorf P, Padosch SA, del Valle y Fuentes D et al (2009) Effects of activated protein C on post cardiac arrest microcirculation: an in vivo microscopy study. Resuscitation 80:940–945PubMedGoogle Scholar
  117. 117.
    Tømte Ø, Drægni T, Mangschau A et al (2010) An observational study of 5 years with standardised post resuscitation treatment after out-of-hospital cardiac arrest. Resuscitation 81:23Google Scholar
  118. 118.
    Tsai MS, Barbut D, Tang W et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 51:1988–1990PubMedGoogle Scholar
  119. 119.
    Tsai MS, Chiang WC, Lee CC et al (2005) Infections in the survivors of out-of-hospital cardiac arrest in the first 7 days. Intensive Care Med 31:621–626PubMedGoogle Scholar
  120. 120.
    Tsai MS, Huang CH, Chang WT et al (2007) The effect of hydrocortisone on the outcome of out-of-hospital cardiac arrest patients: a pilot study. Am J Emerg Med 25:318–325PubMedGoogle Scholar
  121. 121.
    Ueno A, Murakami K, Yamanouchi K et al (1996) Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 88:76–81PubMedGoogle Scholar
  122. 122.
    Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367Google Scholar
  123. 123.
    Van der Wal G, Brinkman S, Bisschops LL et al (2011) Influence of mild therapeutic hypothermia after cardiac arrest on hospital mortality. Crit Care Med 39:84–88Google Scholar
  124. 124.
    Vereczki V, Martin E, Rosenthal RE et al (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 26:821–835PubMedGoogle Scholar
  125. 125.
    Virkkunen I, Yli-Hankala A, Silfvast T (2004) Induction of therapeutic hypothermia after cardiac arrest in prehospital patients using ice-cold Ringer’s solution: a pilot study. Resuscitation 62:299–302PubMedGoogle Scholar
  126. 126.
    Voicu S, Sideris G, Deye N et al (2011) Role of cardiac troponin in the diagnosis of acute myocardial infarction in comatose patients resuscitated from out-of-hospital cardiac arrest. Resuscitation. DOI 10.1016/j.resuscitation.2011.10.008Google Scholar
  127. 127.
    Wilson CM, Allen JD, Bridges JB, Adgey AA (1988) Death and damage caused by multiple direct current shocks: studies in an animal model. Eur Heart J 9:1257–1265PubMedGoogle Scholar
  128. 128.
    Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 sec of ischemia. Circ Res 45:486–492PubMedGoogle Scholar
  129. 129.
    Wolfrum S, Napp F, Radke PW et al (2009) Mild therapeutic hypothermia after cardiac arrest, a nationwide survey on the implementation of the ILCOR guidelines in intensive care units. Circulation 120:1460Google Scholar
  130. 130.
    Wu D, Bassuk J, Arias J et al (2006) Post-resuscitation reperfusion injury: comparison of periodic Gz acceleration versus Thumper CPR. Resuscitation 70:454–462PubMedGoogle Scholar
  131. 131.
    Zeiner A, Holzer M, Sterz F et al (2001) Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome. Arch Intern Med 161:2007–2012PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Schneider
    • 1
  • M. Albertsmeier
    • 2
  • B.W. Böttiger
    • 1
  • P. Teschendorf
    • 3
  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum KölnKölnDeutschland
  2. 2.Chirurgische Klinik und Poliklinik, Klinikum GroßhadernKlinikum der Universität MünchenMünchenDeutschland
  3. 3.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum OsnabrückOsnabrückDeutschland

Personalised recommendations