Der Anaesthesist

, 60:887

Erworbene Muskelschwäche beim kritisch Kranken

Critical-Illness-Polyneuropathie und Critical-Illness-Myopathie
  • K. Judemann
  • D. Lunz
  • Y.A. Zausig
  • B.M. Graf
  • W. Zink
Leitthema

Zusammenfassung

Die erworbene Skelettmuskelschwäche stellt bei kritisch kranken Patienten eine schwerwiegende Komplikation dar, deren Bedeutung in letzter Zeit immer mehr in den Blickpunkt des Interesses rückt. Ursächlich liegen diesem Phänomen klar definierte neuromuskuläre Störungen zugrunde, die sich charakteristischerweise im Verlauf einer schweren Sepsis, eines Multiorganversagens oder eines ARDS („adult respiratory distress syndrome“) entwickeln: die Critical-Illness-Polyneuropathie (CIP), die Critical-Illness-Myopathie (CIM) sowie Mischformen im Sinne einer Critical-Illness-Neuromyopathie (CINM). Sowohl CIP als auch CIM beeinträchtigen die Funktion der Extremitäten- und Atemmuskulatur nachhaltig, was unmittelbar zu einer komplizierten und prolongierten Entwöhnung vom Respirator, einem längeren Intensivaufenthalt sowie einer verzögerten Mobilisation und Rehabilitation führen kann. Die zugrunde liegenden Pathomechanismen sind komplex und bis zum heutigen Tage noch nicht in allen Einzelheiten aufgeklärt. Man geht jedoch davon aus, dass metabolische, inflammatorische und bioenergetische Prozesse in diesem Zusammenhang eine wichtige Rolle spielen. Es wird nach wie vor kontrovers diskutiert, ob CIP und CIM zwei gänzlich verschiedene Krankheitsentitäten sind oder ob sie lediglich unterschiedliche Organmanifestationen mit derselben pathophysiologischen Grundlage darstellen. Vor diesem Hintergrund hat die vorliegende Arbeit zum Ziel, pathophysiologische Aspekte der erworbenen Skelettmuskelschwäche bei kritisch Kranken zu diskutieren, diagnostische Methoden darzustellen sowie therapeutische und präventive Maßnahmen aufzuzeigen.

Schlüsselwörter

Erworbene Skelettmuskelschwäche Critical-Illness-Polyneuropathie Critical-Illness-Myopathie Pathomechanismen Prävention 

Intensive care unit-acquired weakness in the critically ill

Critical illness polyneuropathy and critical illness myopathy

Abstract

Intensive care unit-acquired weakness (ICUAW) is a severe complication in critically ill patients which has been increasingly recognized over the last two decades. By definition ICUAW is caused by distinct neuromuscular disorders, namely critical illness polyneuropathy (CIP) and critical illness myopathy (CIM). Both CIP and CIM can affect limb and respiratory muscles and thus complicate weaning from a ventilator, increase the length of stay in the intensive care unit and delay mobilization and physical rehabilitation. It is controversially discussed whether CIP and CIM are distinct entities or whether they just represent different organ manifestations with common pathomechanisms. These basic pathomechanisms, however, are complex and still not completely understood but metabolic, inflammatory and bioenergetic alterations seem to play a crucial role. In this respect several risk factors have recently been revealed: in addition to the administration of glucocorticoids and non-depolarizing muscle relaxants, sepsis and multi-organ failure per se as well as elevated levels of blood glucose and muscular immobilization have been shown to have a profound impact on the occurrence of CIP and CIM. For the diagnosis, careful physical and neurological examinations, electrophysiological testing and in rare cases nerve and muscle biopsies are recommended. Nevertheless, it appears to be difficult to clearly distinguish between CIM and CIP in a clinical setting. At present no specific therapy for these neuromuscular disorders has been established but recent data suggest that in addition to avoidance of risk factors early active mobilization of critically ill patients may be beneficial.

Keywords

ICU-acquired weakness Critical illness polyneuropathy Critical illness myopathy Pathomechanisms Prevention 

Literatur

  1. 1.
    Acharyya S, Ladner KJ, Nelsen LL et al (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378PubMedGoogle Scholar
  2. 2.
    Alb M, Hirner S, Luecke T (2007) Critical illness polyneuropathy und myopathy. Pathogenese and Diagnostik. Anasthesiol Intensivmed Notfallmed Schmerzther 42:250–258PubMedGoogle Scholar
  3. 3.
    Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Intensive Care Med 29:1505–1514PubMedGoogle Scholar
  4. 4.
    Bercker S, Weber-Carstens S, Deja M et al (2005) Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med 33:711–715PubMedGoogle Scholar
  5. 5.
    Berlit P (2006) Apparative und laborchemische Diagnostik – neurophysiologische Methoden. In: Klinische Neurologie. Springer, Berlin Heidelberg New York, S 123–129Google Scholar
  6. 6.
    Bird SJ (2007) Diagnosis and management of critical illness polyneuropathy and critical illness myopathy. Curr Treat Options Neurol 9:85–92PubMedGoogle Scholar
  7. 7.
    Bittner EA, Martyn JA, George E et al (2009) Measurement of muscle strength in the intensive care unit. Crit Care Med 37:321–330Google Scholar
  8. 8.
    Bloomfield SA (1997) Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 29:197–206PubMedGoogle Scholar
  9. 9.
    Bolton CF (2008) The discovery of critical illness polyneuropathy. Eur J Anaesthesiol Suppl 42:66–67PubMedGoogle Scholar
  10. 10.
    Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32:140–163PubMedGoogle Scholar
  11. 11.
    Bolton CF, Gilbert JJ, Hahn AF, Sibbald WJ (1984) Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry 47:1223–1231PubMedGoogle Scholar
  12. 12.
    Bolton CF, Laverty DA, Brown JD et al (1986) Critically ill polyneuropathy: electrophysiological studies and differentiation from Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry 49:563–573PubMedGoogle Scholar
  13. 13.
    Botteri M, Guarneri B (2008) Electrophysiological tests in intensive care. Eur J Anaesthesiol Suppl 42:174–180PubMedGoogle Scholar
  14. 14.
    Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedGoogle Scholar
  15. 15.
    Brealey D, Karyampudi S, Jacques TS et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497PubMedGoogle Scholar
  16. 16.
    Burnham EL, Moss M, Ziegler TR (2005) Myopathies in critical illness: characterization and nutritional aspects. J Nutr 135:1818S–1823SPubMedGoogle Scholar
  17. 17.
    Callahan LA (2009) Invited editorial on „acquired respiratory muscle weakness in critically ill patients: what is the role of mechanical ventilation-induced diaphragm dysfunction?“ J Appl Physiol 106:360–361Google Scholar
  18. 18.
    Callahan LA, Supinski GS (2010) Diaphragm weakness and mechanical ventilation – what’s the critical issue? Crit Care 14:187PubMedGoogle Scholar
  19. 19.
    Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:354–367Google Scholar
  20. 20.
    Capasso M, Di Muzio A, Pandolfi A et al (2008) Possible role for nitric oxide dysregulation in critical illness myopathy. Muscle Nerve 37:196–202PubMedGoogle Scholar
  21. 21.
    Chelluri L, Im KA, Belle SH et al (2004) Long-term mortality and quality of life after prolonged mechanical ventilation. Crit Care Med 32:61–69PubMedGoogle Scholar
  22. 22.
    Danon MJ, Carpenter S (1991) Myopathy with thick filament (myosin) loss following prolonged paralysis with vecuronium during steroid treatment. Muscle Nerve 14:1131–1139PubMedGoogle Scholar
  23. 23.
    De Jonghe B, Bastuji-Garin S, Sharshar T et al (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 30:1117–1121Google Scholar
  24. 24.
    De Jonghe B, Lacherade JC, Sharshar T, Outin H (2009) Intensive care unit-acquired weakness: risk factors and prevention. Crit Care Med 37:309–315Google Scholar
  25. 25.
    De Jonghe B, Sharshar T, Lefaucheur JP et al (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288:2859–2867Google Scholar
  26. 26.
    De Letter MA, Schmitz PI, Visser LH et al (2001) Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med 29:2281–2286Google Scholar
  27. 27.
    De Letter MA, Doorn PA van, Savelkoul HF et al (2000) Critical illness polyneuropathy and myopathy (CIPNM): evidence for local immune activation by cytokine-expression in the muscle tissue. J Neuroimmunol 106:206–213Google Scholar
  28. 28.
    De Seze M, Petit H, Wiart L et al (2000) Critical illness polyneuropathy. A 2-year follow-up study in 19 severe cases. Eur Neurol 43:61–69Google Scholar
  29. 29.
    Di Giovanni S, Molon A, Broccolini A et al (2004) Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 55:195–206Google Scholar
  30. 30.
    Druschky A, Herkert M, Radespiel-Troger M et al (2001) Critical illness polyneuropathy: clinical findings and cell culture assay of neurotoxicity assessed by a prospective study. Intensive Care Med 27:686–693PubMedGoogle Scholar
  31. 31.
    Fenzi F, Latronico N, Refatti N, Rizzuto N (2003) Enhanced expression of E-selectin on the vascular endothelium of peripheral nerve in critically ill patients with neuromuscular disorders. Acta Neuropathol 106:75–82PubMedGoogle Scholar
  32. 32.
    Ferrando AA, Paddon-Jones D, Wolfe RR (2006) Bed rest and myopathies. Curr Opin Clin Nutr Metab Care 9:410–415PubMedGoogle Scholar
  33. 33.
    Ferrando AA, Sheffield-Moore M, Paddon-Jones D et al (2003) Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab 88:358–362PubMedGoogle Scholar
  34. 34.
    Ferrando AA, Sheffield-Moore M, Wolf SE et al (2001) Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med 29:1936–1942PubMedGoogle Scholar
  35. 35.
    Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297PubMedGoogle Scholar
  36. 36.
    Finfer S, Heritier S (2009) The NICE-SUGAR (Normoglycaemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regulation) Study: statistical analysis plan. Crit Care Resusc 11:46–57PubMedGoogle Scholar
  37. 37.
    Flaring UB, Rooyackers OE, Wernerman J, Hammarqvist F (2003) Temporal changes in muscle glutathione in ICU patients. Intensive Care Med 29:2193–2198PubMedGoogle Scholar
  38. 38.
    Friedrich O (2008) Critical illness myopathy: sepsis-mediated failure of the peripheral nervous system. Eur J Anaesthesiol Suppl 42:73–82PubMedGoogle Scholar
  39. 39.
    Friedrich O (2006) Critical illness myopathy: what is happening? Curr Opin Clin Nutr Metab Care 9:403–409PubMedGoogle Scholar
  40. 40.
    Friedrich O, Fink RH, Hund E (2005) Understanding critical illness myopathy: approaching the pathomechanism. J Nutr 135:1813S–1817SPubMedGoogle Scholar
  41. 41.
    Friedrich O, Hund E (2006) Critical illness myopathy bei Intensivpatienten – Pathogenetische Konzepte und klinisches Management. Anaesthesist 55:1271–1280PubMedGoogle Scholar
  42. 42.
    Friedrich O, Hund E, Wegner F von (2010) Enhanced muscle shortening and impaired Ca2 + channel function in an acute septic myopathy model. J Neurol 257:546–555PubMedGoogle Scholar
  43. 43.
    Friedrich O, Hund E, Weber C et al (2004) Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J Neurol 251:53–65PubMedGoogle Scholar
  44. 44.
    Garnacho-Montero J, Amaya-Villar R, Garcia-Garmendia JL et al (2005) Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 33:349–354PubMedGoogle Scholar
  45. 45.
    Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL et al (2001) Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med 27:1288–1296PubMedGoogle Scholar
  46. 46.
    Giamarellos-Bourboulis EJ, Adamis T, Laoutaris G et al (2004) Immunomodulatory clarithromycin treatment of experimental sepsis and acute pyelonephritis caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:93–99PubMedGoogle Scholar
  47. 47.
    Griffiths RD, Hall J (2010) Intensive care unit-acquired weakness. Crit Care Med 38:779–787PubMedGoogle Scholar
  48. 48.
    Guarneri B, Bertolini G, Latronico N (2008) Long-term outcome in patients with critical illness myopathy or neuropathy: The Italian multicentre CRIMYNE study. J Neurol Neurosurg Psychiatry 79:838–841PubMedGoogle Scholar
  49. 49.
    Gutmann L, Blumenthal D, Schochet SS (1996) Acute type II myofiber atrophy in critical illness. Neurology 46:819–821PubMedGoogle Scholar
  50. 50.
    Hammarqvist F, Luo JL, Cotgreave IA et al (1997) Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 25:78–84PubMedGoogle Scholar
  51. 51.
    Hasselgren PO, Fischer JE (1998) Sepsis: stimulation of energy-dependent protein breakdown resulting in protein loss in skeletal muscle. World J Surg 22:203–208PubMedGoogle Scholar
  52. 52.
    Henderson WR, Finfer S (2009) Differences in outcome between the NICE-SUGAR and Leuven trials: possible methodological explanations. Crit Care Resusc 11:175–177PubMedGoogle Scholar
  53. 53.
    Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G (2008) Clinical review: Critical illness polyneuropathy and myopathy. Crit Care 12:238PubMedGoogle Scholar
  54. 54.
    Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G (2009) Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev:CD006832Google Scholar
  55. 55.
    Hermans G, Vanhorebeek I, Derde S, Van den Berghe G (2009) Metabolic aspects of critical illness polyneuromyopathy. Crit Care Med 37:391–397Google Scholar
  56. 56.
    Hermans G, Wilmer A, Meersseman W et al (2007) Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med 175:480–489PubMedGoogle Scholar
  57. 57.
    Herridge MS (2009) Legacy of intensive care unit-acquired weakness. Crit Care Med 37:457–461Google Scholar
  58. 58.
    Herridge MS, Batt J, Hopkins RO (2008) The pathophysiology of long-term neuromuscular and cognitive outcomes following critical illness. Crit Care Clin 24:179–199PubMedGoogle Scholar
  59. 59.
    Herridge MS, Cheung AM, Tansey CM et al (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693PubMedGoogle Scholar
  60. 60.
    Heyland D, Dhaliwal R (2005) Immunonutrition in the critically ill: from old approaches to new paradigms. Intensive Care Med 31:501–503PubMedGoogle Scholar
  61. 61.
    Heyland DK, Dhaliwal R, Suchner U, Berger MM (2005) Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 31:327–337PubMedGoogle Scholar
  62. 62.
    Hough CL, Lieu BK, Caldwell ES (2011) Manual muscle strength testing of critically ill patients: feasibility and interobserver agreement. Crit Care 15:R43PubMedGoogle Scholar
  63. 63.
    Hund E (1999) Myopathy in critically ill patients. Crit Care Med 27:2544–2547PubMedGoogle Scholar
  64. 64.
    Hund E (2001) Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol 248:929–934PubMedGoogle Scholar
  65. 65.
    Kerbaul F, Brousse M, Collart F et al (2004) Combination of histopathological and electromyographic patterns can help to evaluate functional outcome of critical ill patients with neuromuscular weakness syndromes. Crit Care 8:R358–R366PubMedGoogle Scholar
  66. 66.
    Khan J, Burnham EL, Moss M (2006) Acquired weakness in the ICU: critical illness myopathy and polyneuropathy. Minerva Anestesiol 72:401–406PubMedGoogle Scholar
  67. 67.
    Khan J, Harrison TB, Rich MM (2008) Mechanisms of neuromuscular dysfunction in critical illness. Crit Care Clin 24:165–177PubMedGoogle Scholar
  68. 68.
    Khan J, Harrison TB, Rich MM, Moss M (2006) Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology 67:1421–1425PubMedGoogle Scholar
  69. 69.
    Klaude M, Fredriksson K, Tjader I et al (2007) Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci (Lond) 112:499–506Google Scholar
  70. 70.
    Koch S, Spuler S, Deja M et al (2011) Critical illness myopathy is frequent: accompanying neuropathy protracts ICU discharge. J Neurol Neurosurg Psychiatry 82:287–293PubMedGoogle Scholar
  71. 71.
    Lacomis D (2002) Critical illness myopathy. Curr Rheumatol Rep 4:403–408PubMedGoogle Scholar
  72. 72.
    Lacomis D, Giuliani MJ, Van Cott A, Kramer DJ (1996) Acute myopathy of intensive care: clinical, electromyographic, and pathological aspects. Ann Neurol 40:645–654PubMedGoogle Scholar
  73. 73.
    Lacomis D, Petrella JT, Giuliani MJ (1998) Causes of neuromuscular weakness in the intensive care unit: a study of ninety-two patients. Muscle Nerve 21:610–617PubMedGoogle Scholar
  74. 74.
    Lacomis D, Zochodne DW, Bird SJ (2000) Critical illness myopathy. Muscle Nerve 23:1785–1788PubMedGoogle Scholar
  75. 75.
    Lang CH, Hong-Brown L, Frost RA (2005) Cytokine inhibition of JAK-STAT signaling: a new mechanism of growth hormone resistance. Pediatr Nephrol 20:306–312PubMedGoogle Scholar
  76. 76.
    Latronico N (2003) Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intensive Care Med 29:1411–1413PubMedGoogle Scholar
  77. 77.
    Latronico N, Bertolini G, Guarneri B et al (2007) Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study. Crit Care 11:R11PubMedGoogle Scholar
  78. 78.
    Latronico N, Fenzi F, Recupero D et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582PubMedGoogle Scholar
  79. 79.
    Latronico N, Guarneri B (2008) Critical illness myopathy and neuropathy. Minerva Anestesiol 74:319–323PubMedGoogle Scholar
  80. 80.
    Latronico N, Rasulo FA (2010) Presentation and management of ICU myopathy and neuropathy. Curr Opin Crit Care (Epub ahead of print)Google Scholar
  81. 81.
    Latronico N, Shehu I, Guarneri B (2009) Use of electrophysiologic testing. Crit Care Med 37:316–320Google Scholar
  82. 82.
    Lefaucheur JP, Nordine T, Rodriguez P, Brochard L (2006) Origin of ICU acquired paresis determined by direct muscle stimulation. J Neurol Neurosurg Psychiatry 77:500–506PubMedGoogle Scholar
  83. 83.
    Leijten FS, De Weerd AW, Poortvliet DC et al (1996) Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med 22:856–861PubMedGoogle Scholar
  84. 84.
    Leung TW, Wong KS, Hui AC et al (2005) Myopathic changes associated with severe acute respiratory syndrome: a postmortem case series. Arch Neurol 62:1113–1117PubMedGoogle Scholar
  85. 85.
    Lydon A, Martyn JA (2003) Apoptosis in critical illness. Int Anesthesiol Clin 41:65–77PubMedGoogle Scholar
  86. 86.
    Macdonald J, Galley HF, Webster NR (2003) Oxidative stress and gene expression in sepsis. Br J Anaesth 90:221–232PubMedGoogle Scholar
  87. 87.
    Maramattom BV, Wijdicks EF (2006) Acute neuromuscular weakness in the intensive care unit. Crit Care Med 34:2835–2841PubMedGoogle Scholar
  88. 88.
    Marik PE, Zaloga GP (2008) Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med 34:1980–1990PubMedGoogle Scholar
  89. 89.
    Marino PL, Millili JJ (1998) Possible role of dietary lipids in critical illness polyneuropathy. Intensive Care Med 24:87PubMedGoogle Scholar
  90. 90.
    Massa R, Carpenter S, Holland P, Karpati G (1992) Loss and renewal of thick myofilaments in glucocorticoid-treated rat soleus after denervation and reinnervation. Muscle Nerve 15:1290–1298PubMedGoogle Scholar
  91. 91.
    Mertens HG (1961) Dissiminated neuropathy following coma. On the differentiation of so-called toxic neuropathy. Nervenarzt 32:71–79PubMedGoogle Scholar
  92. 92.
    Morris PE, Goad A, Thompson C et al (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 36:2238–2243PubMedGoogle Scholar
  93. 93.
    Muellges W, Stoll G (2011) Critical-illness-Polyneuropathie und -Myopathie. Dtsch Med Wochenschr 136:769–774Google Scholar
  94. 94.
    Muller EA (1970) Influence of training and of inactivity on muscle strength. Arch Phys Med Rehabil 51:449–462PubMedGoogle Scholar
  95. 95.
    Needham DM (2008) Mobilizing patients in the intensive care unit: improving neuromuscular weakness and physical function. JAMA 300:1685–1690PubMedGoogle Scholar
  96. 96.
    Needham DM, Truong AD, Fan E (2009) Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med 37:436–441Google Scholar
  97. 97.
    Norman H, Kandala K, Kolluri R et al (2006) A porcine model of acute quadriplegic myopathy: a feasibility study. Acta Anaesthesiol Scand 50:1058–1067PubMedGoogle Scholar
  98. 98.
    Osler W (1892) The principles and practice of medicine, designed for the use of practitioners and students of medicine. D. Appleton and Company, New YorkGoogle Scholar
  99. 99.
    Puthucheary Z, Harridge S, Hart N (2010) Skeletal muscle dysfunction in critical care: wasting, weakness, and rehabilitation strategies. Crit Care Med 38:676–682Google Scholar
  100. 100.
    Ramsay DA, Zochodne DW, Robertson DM et al (1993) A syndrome of acute severe muscle necrosis in intensive care unit patients. J Neuropathol Exp Neurol 52:387–398PubMedGoogle Scholar
  101. 101.
    Rich MM, Bird SJ, Raps EC et al (1997) Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 20:665–673PubMedGoogle Scholar
  102. 102.
    Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547:555–566PubMedGoogle Scholar
  103. 103.
    Rich MM, Teener JW, Raps EC et al (1996) Muscle is electrically inexcitable in acute quadriplegic myopathy. Neurology 46:731–736PubMedGoogle Scholar
  104. 104.
    Rossignol B, Gueret G, Pennec JP et al (2008) Effects of chronic sepsis on contractile properties of fast twitch muscle in an experimental model of critical illness neuromyopathy in the rat. Crit Care Med 36:1855–1863PubMedGoogle Scholar
  105. 105.
    Rouleau G, Karpati G, Carpenter S et al (1987) Glucocorticoid excess induces preferential depletion of myosin in denervated skeletal muscle fibers. Muscle Nerve 10:428–438PubMedGoogle Scholar
  106. 106.
    Sander HW, Golden M, Danon MJ (2002) Quadriplegic areflexic ICU illness: selective thick filament loss and normal nerve histology. Muscle Nerve 26:499–505PubMedGoogle Scholar
  107. 107.
    Schefold JC, Bierbrauer J, Weber-Carstens S (2010) Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachex Sarcopenia Muscle 1:147–157PubMedGoogle Scholar
  108. 108.
    Schwarz J, Planck J, Briegel J, Straube A (1997) Single-fiber electromyography, nerve conduction studies, and conventional electromyography in patients with critical-illness polyneuropathy: evidence for a lesion of terminal motor axons. Muscle Nerve 20:696–701PubMedGoogle Scholar
  109. 109.
    Schweickert WD, Hall J (2007) ICU-acquired weakness. Chest 131:1541–1549PubMedGoogle Scholar
  110. 110.
    Schweickert WD, Pohlman MC, Pohlman AS et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373:1874–1882PubMedGoogle Scholar
  111. 111.
    Seghelini E (2008) Direct stimulation: a useful technique. Eur J Anaesthesiol Suppl 42:181–185PubMedGoogle Scholar
  112. 112.
    Segredo V, Caldwell JE, Matthay MA et al (1992) Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 327:524–528PubMedGoogle Scholar
  113. 113.
    Showalter CJ, Engel AG (1997) Acute quadriplegic myopathy: analysis of myosin isoforms and evidence for calpain-mediated proteolysis. Muscle Nerve 20:316–322PubMedGoogle Scholar
  114. 114.
    Stevens RD, Dowdy DW, Michaels RK et al (2007) Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med 33:1876–1891PubMedGoogle Scholar
  115. 115.
    Stevens RD, Marshall SA, Cornblath DR et al (2009) A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 37:299–308Google Scholar
  116. 116.
    Strasser EM, Stattner S, Karner J et al (2009) Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients. Ann Surg 249:738–743PubMedGoogle Scholar
  117. 117.
    Supplement (2009) Crit Care Med 37(Suppl 10):295–461Google Scholar
  118. 118.
    Taylor BE, Buchman TG (2008) Is there a role for growth hormone therapy in refractory critical illness? Curr Opin Crit Care 14:438–444PubMedGoogle Scholar
  119. 119.
    Teener JW, Rich MM (2006) Dysregulation of sodium channel gating in critical illness myopathy. J Muscle Res Cell Motil 27:291–296PubMedGoogle Scholar
  120. 120.
    Tennila A, Salmi T, Pettila V et al (2000) Early signs of critical illness polyneuropathy in ICU patients with systemic inflammatory response syndrome or sepsis. Intensive Care Med 26:1360–1363PubMedGoogle Scholar
  121. 121.
    Tiao G, Hobler S, Wang JJ et al (1997) Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 99:163–168PubMedGoogle Scholar
  122. 122.
    Trojaborg W (2006) Electrophysiologic techniques in critical illness-associated weakness. J Neurol Sci 242:83–85PubMedGoogle Scholar
  123. 123.
    Trojaborg W, Weimer LH, Hays AP (2001) Electrophysiologic studies in critical illness associated weakness: myopathy or neuropathy – a reappraisal. Clin Neurophysiol 112:1586–1593PubMedGoogle Scholar
  124. 124.
    Trumbeckaite S, Opalka JR, Neuhof C et al (2001) Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function. Eur J Biochem 268:1422–1429PubMedGoogle Scholar
  125. 125.
    Van den Berghe G, Schoonheydt K, Becx P et al (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64:1348–1353Google Scholar
  126. 126.
    Verheul GA, Jongh-Leuvenink J de, Op de Coul AA et al (1994) Tumor necrosis factor and interleukin-6 in critical illness polyneuromyopathy. Clin Neurol Neurosurg 96:300–304PubMedGoogle Scholar
  127. 127.
    Waldhausen E, Mingers B, Lippers P, Keser G (1997) Critical illness polyneuropathy due to parenteral nutrition. Intensive Care Med 23:922–923PubMedGoogle Scholar
  128. 128.
    Weber-Carstens S, Deja M, Koch S et al (2010) Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care 14:R119PubMedGoogle Scholar
  129. 129.
    Weber-Carstens S, Koch S, Spuler S et al (2009) Nonexcitable muscle membrane predicts intensive care unit-acquired paresis in mechanically ventilated, sedated patients. Crit Care Med 37:2632–2637PubMedGoogle Scholar
  130. 130.
    Wieske L, Harmsen RE, Schultz MJ, Horn J (2011) Is critical illness neuromyopathy and duration of mechanical ventilation decreased by strict glucose control? Neurocrit Care 14:475–481PubMedGoogle Scholar
  131. 131.
    Witt NJ, Zochodne DW, Bolton CF et al (1991) Peripheral nerve function in sepsis and multiple organ failure. Chest 99:176–184PubMedGoogle Scholar
  132. 132.
    Woittiez AJ, Veneman TF, Rakic S (2001) Critical illness polyneuropathy in patients with systemic inflammatory response syndrome or septic shock. Intensive Care Med 27:613PubMedGoogle Scholar
  133. 133.
    Wolfe R, Ferrando A, Sheffield-Moore M, Urban R (2000) Testosterone and muscle protein metabolism. Mayo Clin Proc 75(Suppl):55–59; discussion 59–60Google Scholar
  134. 134.
    Young GB (2008) Critical illness myopathy: deeper insights. Crit Care Med 36:1977PubMedGoogle Scholar
  135. 135.
    Z’Graggen WJ, Lin CS, Howard RS et al (2006) Nerve excitability changes in critical illness polyneuropathy. Brain 129:2461–2470Google Scholar
  136. 136.
    Zifko UA, Zipko HT, Bolton CF (1998) Clinical and electrophysiological findings in critical illness polyneuropathy. J Neurol Sci 159:186–193PubMedGoogle Scholar
  137. 137.
    Zink W, Kaess M, Hofer S et al (2008) Alterations in intracellular Ca2+-homeostasis of skeletal muscle fibers during sepsis. Crit Care Med 36:1559–1563PubMedGoogle Scholar
  138. 138.
    Zink W, Kollmar R, Schwab S (2009) Critical illness polyneuropathy and myopathy in the intensive care unit. Nat Rev Neurol 5:372–379PubMedGoogle Scholar
  139. 139.
    Zochodne DW, Bolton CF, Wells GA et al (1987) Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain 110(Pt 4):819–841PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • K. Judemann
    • 1
  • D. Lunz
    • 1
  • Y.A. Zausig
    • 1
  • B.M. Graf
    • 1
  • W. Zink
    • 2
  1. 1.Klinik für AnästhesiologieUniversitätsklinikum RegensburgRegensburgDeutschland
  2. 2.Klinik für Anästhesiologie und Operative IntensivmedizinKlinikum der Stadt LudwigshafenLudwigshafenDeutschland

Personalised recommendations