Advertisement

Der Anaesthesist

, Volume 60, Issue 4, pp 303–311 | Cite as

Abschätzung des Substitutionsvolumens nach Verbrennungstrauma

Systematische Übersichtsarbeit über publizierte Formeln
  • O. SpeltenEmail author
  • W.A. Wetsch
  • S. Braunecker
  • H. Genzwürker
  • J. Hinkelbein
Originalien

Zusammenfassung

Einleitung

Eine dem Bedarf angemessene Volumensubstitution bleibt auch heutzutage in der präklinischen und frühen klinischen Phase nach Verbrennungstrauma eine Herausforderung für das behandelnde Team. In den vergangenen Jahrzehnten wurden mehrere, teils unterschiedliche Formeln, die eine Hilfestellung für eine präzise Volumensubstitution nach Verbrennungen geben sollen, publiziert und untersucht.

Material und Methoden

Mithilfe einer systematischen PubMed-Recherche wurden publizierte Formeln zur Volumensubstitution nach Verbrennungstrauma identifiziert. Dabei wurden die Begriffe „burn“, „thermal“, „treatment“ oder „therapy“ oder „resuscitation“, „fluid“, „formula“ und „adult“ oder „pediatric“ und „paediatric“ in variabler Kombination als Suchbegriffe eingesetzt. Die Analyse wurde auf den Zeitraum vom 01.01.1950 bis zum 30.06.2010 und die Datenbank PubMed (http://www.pubmed.com) begrenzt. Zusätzlich wurden die in den Beiträgen zitierten Literaturstellen gesichtet und entsprechende relevante Publikationen eingeschlossen. Publikationen und Formeln wurden von 2 unabhängigen Untersuchern bewertet.

Ergebnisse

In dem gegebenen Zeitrahmen wurden 8 Publikationen (5 Originalarbeiten und 3 Buchkapitel) identifiziert. Hiervon empfehlen 3 Arbeiten Kolloidlösungen, 4 Arbeiten kristalline Lösungen und eine Arbeit hypertone Elektrolytlösungen in den ersten 24 h nach Verbrennungstrauma. Nur ein Beitrag behandelt die Anwendung speziell bei Kindern.

Schlussfolgerungen

Die identifizierten Formeln führen z. T. zu deutlich unterschiedlichen Substitutionsvolumina. Daher sollte deren Anwendung streng kontrolliert und klinische Werte sollten miteinbezogen werden. Die Urinproduktion hat sich als geeigneter singulärer Parameter etabliert. Die Anwendung von Kolloiden und hypertonen Lösungen führt zu einer Reduktion des Gesamtvolumens und wird weiterhin kontrovers diskutiert.

Schlüsselwörter

Verbrennungen Wiederbelebung Flüssigkeitstherapie Rehydrierungslösungen Algorithmen 

Estimation of substitution volume after burn trauma

Systematic review of published formulae

Abstract

Background

Fluid resuscitation after severe burns remains a challenging task particularly in the preclinical and early clinical phases. To facilitate volume substitution after burn trauma several formulae have been published and evaluated, nevertheless, the optimal formula has not yet been identified.

Methods

A systematic PubMed search was performed to identify published formulae for fluid resuscitation after severe burns. The search terms “burn”, “thermal”, “treatment”, “therapy” or “resuscitation”, “fluid”, “formula” and “adult”, “pediatric” or “paediatric” were used in various combinations. Analysis was limited to the period from 01.01.1950 to 30.06.2010 and database entries in PubMed (http://www.pubmed.com). Additionally, references cited in the papers were analyzed and relevant publications were also included. Publications and formulae were assessed and classified by two independent investigators.

Results

Within the specified time frame eight publications (five original contributions and three book chapters) were identified of which three formulae recommended colloid solutions, four recommended electrolyte solutions and one suggested hypertonic solutions within the first 24 h for fluid resuscitation. Only one formula specifically dealt with fluid resuscitation in infants.

Conclusion

The identified formulae led to sometimes strikingly diverse calculations of resuscitation fluid volumes. Therefore their use should be monitored closely and clinical values included. Urine output is a well established individual parameter. Use of colloid and hypertonic solutions leads to a reduced total fluid volume but is still controversially discussed.

Keywords

Burns Resuscitation Fluid therapy Rehydration solutions Algorithms 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Ahrns KS (2004) Trends in burn resuscitation: shifting the focus from fluids to adequate endpoint monitoring, edema control, and adjuvant therapies. Crit Care Nurs Clin North Am 16:75–98PubMedCrossRefGoogle Scholar
  2. 2.
    Ahrns KS, Harkins DR (1999) Initial resuscitation after burn injury: therapies, strategies, and controversies. AACN Clin Issues 10:46–60PubMedCrossRefGoogle Scholar
  3. 3.
    Alderson P, Schierhout G, Roberts I et al (2000) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev:CD000567Google Scholar
  4. 4.
    Alvarado R, Chung KK, Cancio LC et al (2009) Burn resuscitation. Burns 35:4–14PubMedCrossRefGoogle Scholar
  5. 5.
    Arturson G (1991) Initial fluid resuscitation. Anasthesiol Intensivmed Notfallmed Schmerzther 37:11–42Google Scholar
  6. 6.
    Artz CP, Reiss E, Davis JH et al (1953) The exposure treatment of burns. Ann Surg 137:456–464PubMedCrossRefGoogle Scholar
  7. 7.
    Baxter CR (1974) Fluid volume and electrolyte changes of the early postburn period. Clin Plast Surg 1:693–703PubMedGoogle Scholar
  8. 8.
    Baxter CR, Shires T (1968) Physiological response to crystalloid resuscitation of severe burns. Ann N Y Acad Sci 150:874–894PubMedCrossRefGoogle Scholar
  9. 9.
    Berger MM, Bernath MA, Chiolero RL (2001) Resuscitation, anaesthesia and analgesia of the burned patient. Curr Opin Anaesthesiol 14:431–435PubMedCrossRefGoogle Scholar
  10. 10.
    Bhat S Hym, Gulati S, Rylah B et al (2004) The problems of burn resuscitation formulae; a need for a simplified guideline. J Burns Wounds 3Google Scholar
  11. 11.
    Cartotto RC, Innes M, Musgrave MA et al (2002) How well does the Parkland formula estimate actual fluid resuscitation volumes? J Burn Care Rehabil 23:258–265PubMedCrossRefGoogle Scholar
  12. 12.
    Carvajal HF (1994) Fluid resuscitation of pediatric burn victims: a critical appraisal. Pediatr Nephrol 8:357–366PubMedCrossRefGoogle Scholar
  13. 13.
    Carvajal HF (1980) A physiologic approach to fluid therapy in severely burned children. Surg Gynecol Obstet 150:379–384PubMedGoogle Scholar
  14. 14.
    Collis N, Smith G, Fenton OM (1999) Accuracy of burn size estimation and subsequent fluid resuscitation prior to arrival at the Yorkshire Regional Burns Unit. A three year retrospective study. Burns 25:345–351PubMedCrossRefGoogle Scholar
  15. 15.
    Cooper AB, Cohn SM, Zhang HS et al (2006) Five percent albumin for adult burn shock resuscitation: lack of effect on daily multiple organ dysfunction score. Transfusion 46:80–89PubMedCrossRefGoogle Scholar
  16. 16.
    Demling RH (2005) The burn edema process: current concepts. J Burn Care Rehabil 26:207–227PubMedCrossRefGoogle Scholar
  17. 17.
    Demling RH, Kramer GC, Gunther R et al (1984) Effect of nonprotein colloid on postburn edema formation in soft tissues and lung. Surgery 95:593–602PubMedGoogle Scholar
  18. 18.
    Deutsche Gesellschaft für Verbrennungsmedizin (2007) Leitlinien für Chemisch/Thermische Verletzungen. http://www.verbrennungsmedizin.de/leitlinien_2.htmGoogle Scholar
  19. 19.
    Du GB, Slater H, Goldfarb IW (1991) Influences of different resuscitation regimens on acute early weight gain in extensively burned patients. Burns 17:147–150PubMedCrossRefGoogle Scholar
  20. 20.
    Dulhunty JM, Boots RJ, Rudd MJ et al (2008) Increased fluid resuscitation can lead to adverse outcomes in major-burn injured patients, but low mortality is achievable. Burns 34:1090–1097PubMedCrossRefGoogle Scholar
  21. 21.
    Engrav LH, Colescott PL, Kemalyan N et al (2000) A biopsy of the use of the Baxter formula to resuscitate burns or do we do it like Charlie did it? J Burn Care Rehabil 21:91–95PubMedCrossRefGoogle Scholar
  22. 22.
    Evans EI, Purnell OJ, Robinett PW et al (1952) Fluid and electrolyte requirements in severe burns. Ann Surg 135:804–817PubMedCrossRefGoogle Scholar
  23. 23.
    Germann GHB (1996) Thermische und chemische Verletzungen. In: Durst J (Hrsg) Traumatologische Praxis. Schattauer, Stuttgart, S 621–683Google Scholar
  24. 24.
    Goodwin CW, Dorethy J, Lam V et al (1983) Randomized trial of efficacy of crystalloid and colloid resuscitation on hemodynamic response and lung water following thermal injury. Ann Surg 197:520–531PubMedCrossRefGoogle Scholar
  25. 25.
    Greenhalgh DG (2007) Burn resuscitation. J Burn Care Res 28:555–565PubMedCrossRefGoogle Scholar
  26. 26.
    Guha SC, Kinsky MP, Button B et al (1996) Burn resuscitation: crystalloid versus colloid versus hypertonic saline hyperoncotic colloid in sheep. Crit Care Med 24:1849–1857PubMedCrossRefGoogle Scholar
  27. 27.
    Hammond JS, Ward CG (1987) Transfers from emergency room to burn center: errors in burn size estimate. J Trauma 27:1161–1165PubMedCrossRefGoogle Scholar
  28. 28.
    Holm C, Mayr M, Tegeler J et al (2004) A clinical randomized study on the effects of invasive monitoring on burn shock resuscitation. Burns 30:798–807PubMedCrossRefGoogle Scholar
  29. 29.
    Holm C, Melcer B, Horbrand F et al (2001) Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients. Burns 27:161–166PubMedCrossRefGoogle Scholar
  30. 30.
    Huang PP, Stucky FS, Dimick AR et al (1995) Hypertonic sodium resuscitation is associated with renal failure and death. Ann Surg 221:543–554; discussion 554–547PubMedCrossRefGoogle Scholar
  31. 31.
    Ivy ME, Atweh NA, Palmer J et al (2000) Intra-abdominal hypertension and abdominal compartment syndrome in burn patients. J Trauma 49:387–391PubMedCrossRefGoogle Scholar
  32. 32.
    Jester I, Genzwürker H, Jester A et al (2006) Emergency management of burn in juries in children. Notfall Rettungsmed 9:227–238CrossRefGoogle Scholar
  33. 33.
    Kahn SA, Schoemann M, Lentz CW (2010) Burn resuscitation index: a simple method for calculating fluid resuscitation in the burn patient. J Burn Care Res 31:616–623PubMedCrossRefGoogle Scholar
  34. 34.
    Klein MB, Hayden D, Elson C et al (2007) The association between fluid administration and outcome following major burn: a multicenter study. Ann Surg 245:622–628PubMedCrossRefGoogle Scholar
  35. 35.
    Koustova E, Stanton K, Gushchin V et al (2002) Effects of lactated Ringer’s solutions on human leukocytes. J Trauma 52:872–878PubMedCrossRefGoogle Scholar
  36. 36.
    Lund CC, Browder NC (1944) The estimation of areas of burns. Surg Gynecol Obstet 79:352–358Google Scholar
  37. 37.
    Malic CC, Karoo RO, Austin O et al (2007) Resuscitation burn card – a useful tool for burn injury assessment. Burns 33:195–199PubMedCrossRefGoogle Scholar
  38. 38.
    Mansfield MD, Kinsella J (1996) Use of invasive cardiovascular monitoring in patients with burns greater than 30 per cent body surface area: a survey of 251 centres. Burns 22:549–551PubMedCrossRefGoogle Scholar
  39. 39.
    Monafo WW (1970) The treatment of burn shock by the intravenous and oral administration of hypertonic lactated saline solution. J Trauma 10:575–586PubMedCrossRefGoogle Scholar
  40. 40.
    Muir IA BTL (1974) Burns and their treatment. Year Book Medical Publishers, ChicagoGoogle Scholar
  41. 41.
    Nichter LS, Bryant CA, Edlich RF (1985) Efficacy of burned surface area estimates calculated from charts – the need for a computer-based model. J Trauma 25:477–481PubMedCrossRefGoogle Scholar
  42. 42.
    O’Mara MS, Slater H, Goldfarb IW et al (2005) A prospective, randomized evaluation of intra-abdominal pressures with crystalloid and colloid resuscitation in burn patients. J Trauma 58:1011–1018CrossRefGoogle Scholar
  43. 43.
    Oda J, Ueyama M, Yamashita K et al (2006) Hypertonic lactated saline resuscitation reduces the risk of abdominal compartment syndrome in severely burned patients. J Trauma 60:64–71PubMedCrossRefGoogle Scholar
  44. 44.
    Pham TN, Cancio LC, Gibran NS (2008) American Burn Association practice guidelines burn shock resuscitation. J Burn Care Res 29:257–266PubMedCrossRefGoogle Scholar
  45. 45.
    Pruitt BA Jr (1978) Advances in fluid therapy and the early care of the burn patient. World J Surg 2:139–150PubMedCrossRefGoogle Scholar
  46. 46.
    Pruitt BA Jr (1979) The burn patient: I. Initial care. Curr Probl Surg 16:1–55Google Scholar
  47. 47.
    Pruitt BA Jr, Goodwin CW Jr (1983) Current treatment of the extensively burned patient. Surg Annu 15:331–364PubMedGoogle Scholar
  48. 48.
    Rhee P, Burris D, Kaufmann C et al (1998) Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma 44:313–319PubMedCrossRefGoogle Scholar
  49. 49.
    Rose JK, Herndon DN (1997) Advances in the treatment of burn patients. Burns 23 (Suppl 1):19–26CrossRefGoogle Scholar
  50. 50.
    Saffle JI (2007) The phenomenon of „fluid creep“ in acute burn resuscitation. J Burn Care Res 28:382–395PubMedCrossRefGoogle Scholar
  51. 51.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ 316:961–964PubMedGoogle Scholar
  52. 52.
    Scholl H (2002) Luftrettung. S+K, EdewechtGoogle Scholar
  53. 53.
    Singbartl K, Ley K (2004) Leukocyte recruitment and acute renal failure. J Mol Med 82:91–101PubMedCrossRefGoogle Scholar
  54. 54.
    Spanholtz TA, Theodorou P, Amini P et al (2009) Versorgung von Schwerstverbrannten: Akuttherapie und Nachsorge. Dtsch Arztebl 106:607–613Google Scholar
  55. 55.
    Sullivan SR, Friedrich JB, Engrav LH et al (2004) Opioid creep is real and may be the cause of „fluid creep“. Burns 30:583–590PubMedCrossRefGoogle Scholar
  56. 56.
    Tricklebank S (2009) Modern trends in fluid therapy for burns. Burns 35:757–767PubMedCrossRefGoogle Scholar
  57. 57.
    Trop M (1997) Pediatric patients with burns do require a different therapeutic approach. Acta Chir Austriaca 29:320–324CrossRefGoogle Scholar
  58. 58.
    Venkatesh B, Meacher R, Muller MJ et al (2001) Monitoring tissue oxygenation during resuscitation of major burns. J Trauma 50:485–494PubMedCrossRefGoogle Scholar
  59. 59.
    Vlachou E, Gosling P, Moiemen NS (2006) Microalbuminuria: a marker of endothelial dysfunction in thermal injury. Burns 32:1009–1016PubMedCrossRefGoogle Scholar
  60. 60.
    Wallace AB (1951) The exposure treatment of burns. Lancet 1:501–504PubMedCrossRefGoogle Scholar
  61. 61.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349PubMedCrossRefGoogle Scholar
  62. 62.
    Waxman K, Holness R, Tominaga G et al (1989) Hemodynamic and oxygen transport effects of pentastarch in burn resuscitation. Ann Surg 209:341–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • O. Spelten
    • 1
    Email author
  • W.A. Wetsch
    • 1
  • S. Braunecker
    • 1
  • H. Genzwürker
    • 2
  • J. Hinkelbein
    • 1
  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum KölnKölnDeutschland
  2. 2.Klinik für Anästhesiologie und IntensivmedizinNeckar-Odenwald-Kliniken gGmbH, Standorte Buchen und MosbachBuchenDeutschland

Personalised recommendations