Der Anaesthesist

, Volume 60, Issue 3, pp 236–242 | Cite as

Nosokomiale Pneumonie

Prävention und Diagnostik
Intensivmedizin
  • 877 Downloads

Zusammenfassung

Eine Pneumonie, die nach mehr als 48-stündiger maschineller Beatmung entsteht, wird als ventilatorassoziierte Pneumonie (VAP) bezeichnet. Die VAP ist die häufigste nosokomiale Infektion in der Intensivmedizin und mit einer längeren Intensivstations-, Krankenhausverweildauer und einer erhöhten Letalität verbunden. Der zentrale Pathomechanismus für die Pneumonieentstehung ist weniger die maschinelle Beatmung als vielmehr der Keimeintritt in das Tracheobronchialsystem der Lungen über den Endotrachealtubus. Vermeidung der endotrachealen Intubation, Hygienemaßnahmen, Reduktion der oropharyngealen Keimlast und Vermeidung bzw. Reduktion der Mikroaspiration sind wesentliche Ansatzpunkte von Präventionsstrategien. Der therapeutische Erfolg bei der Behandlung einer VAP ist an eine frühzeitige Diagnose und Therapie gebunden. Der Verdacht auf eine Pneumonie wird nach klinischen und radiologischen Kriterien gestellt. Biomarker und mikrobiologische Befunde sind für die Verlaufsbeurteilung und Reevaluierung der Verdachtsdiagnose unentbehrlich.

Schlüsselworte

Intubation, intratracheal Pneumonie, ventilatorassoziiert Bakterielle Infektionen Evidenzbasierte Medizin Biomarker 

Nosocomial pneumonia

Prevention and diagnostic

Abstract

Pneumonia occurring more than 48 h after induction of mechanical ventilation is called ventilator-associated pneumonia (VAP). VAP is the most common nosocomial infection in intensive care medicine and is associated with prolonged intensive care and hospital stay and a higher mortality. The main pathomechanism for development of ventilator-associated pneumonia is not so much the mechanical ventilation per se but more the pathogens passing along the tube towards the lungs. Avoidance of tracheal intubation, strict hygienic measures, reduction of oropharyngeal colonization and the avoidance of microaspiration are the most promising prevention strategies. Therapeutic success in treatment of VAP is coupled to an early diagnosis and therapy. Suspicion of pneumonia is based on clinical and radiologic criteria. Biomarkers and microbiological findings are important for follow-up and reevaluation of the suspected diagnosis.

Keywords

Intubation, intratracheal Pneumonia, ventilator-associated Bacterial infections Evidence-based medicine Biomarker 

Notes

Interessenkonflikt

T.P. hat Vortragshonorare von Covidien erhalten, M.Q. ist Mitglied des internationalen Sachverständigenrats (International Advisory Board) von Covidien und hat Vortragshonorare von Covidien erhalten.

Literatur

  1. 1.
    Suetens C, Morales I, Savey A et al (2007) European surveillance of ICU-acquired infections (HELICS-ICU): methods and main results. J Hosp Infect 65 (Suppl 2):171–173PubMedCrossRefGoogle Scholar
  2. 2.
    Ibrahim EH, Ward S, Sherman G, Kollef MH (2000) A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 117: 1434–1442PubMedCrossRefGoogle Scholar
  3. 3.
    Kollef MH (2004) Prevention of hospital-associated pneumonia and ventilator-associated pneumonia. Crit Care Med 32:1396–1405PubMedCrossRefGoogle Scholar
  4. 4.
    American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  5. 5.
    Muscedere J, Dodek P, Keenan S et al (2008) Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: prevention. J Crit Care 23:126–137PubMedCrossRefGoogle Scholar
  6. 6.
    Masterton RG, Galloway A, French G et al (2008) Guidelines for the management of hospital-acquired pneumonia in the UK: report of the working party on hospital-acquired pneumonia of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 62:5–34PubMedCrossRefGoogle Scholar
  7. 7.
    Girou E, Schortgen F, Delclaux C et al (2000) Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA 284:2361–2367PubMedCrossRefGoogle Scholar
  8. 8.
    Dezfulian C, Shojania K, Collard HR et al (2005) Subglottic secretion drainage for preventing ventilator-associated pneumonia: a meta-analysis. Am J Med 118:11–18PubMedCrossRefGoogle Scholar
  9. 9.
    Bouza E, Pérez MJ, Muñoz P et al (2008) Continuous aspiration of subglottic secretions in the prevention of ventilator-associated pneumonia in the postoperative period of major heart surgery. Chest 134:938–946PubMedCrossRefGoogle Scholar
  10. 10.
    Poelaert J, Depuydt P, De Wolf A et al (2008) Polyurethane cuffed endotracheal tubes to prevent early postoperative pneumonia after cardiac surgery: a pilot study. J Thorac Cardiovasc Surg 135:771–776PubMedCrossRefGoogle Scholar
  11. 11.
    Reinhart K, Brunkhorst FM, Bone HG (2010) Prevention, diagnosis, treatment, and follow-up care of sepsis. First revision of the S2k Guidelines of the German Sepsis Society (DSG) and the German Interdisciplinary Association for Intensive and Emergency Care Medicine (DIVI). Anaesthesist 59:347–370PubMedCrossRefGoogle Scholar
  12. 12.
    Chan EY, Ruest A, Meade MO, Cook DJ (2007) Oral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ 334:889PubMedCrossRefGoogle Scholar
  13. 13.
    Krueger WA, Lenhart FP, Neeser G et al (2002) Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients: a prospective, stratified, randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 166:1029–1037PubMedCrossRefGoogle Scholar
  14. 14.
    Smet AM de, Kluytmans JA, Cooper BS et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360:20–31PubMedCrossRefGoogle Scholar
  15. 15.
    Oostdijk EA, Smet AM de, Blok HE et al (2010) Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am J Respir Crit Care Med 181:452–457PubMedCrossRefGoogle Scholar
  16. 16.
    Alexiou VG, Lerodiakonou V, Dimopoulos G, Falagas ME (2009) Impact of patient position on the incidence of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. J Crit Care 24:515–522PubMedCrossRefGoogle Scholar
  17. 17.
    Nieuwenhoven CA van, Vandenbroucke-Grauls C, Tiel FH van et al (2006) Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 34: 396–402PubMedCrossRefGoogle Scholar
  18. 18.
    Klompas M (2009) The paradox of ventilator-associated pneumonia prevention measures. Crit Care 13:315PubMedCrossRefGoogle Scholar
  19. 19.
    Wip C, Napolitano L (2009) Bundles to prevent ventilator-associated pneumonia: how valuable are they? Curr Opin Infect Dis 22:159–166PubMedCrossRefGoogle Scholar
  20. 20.
    Hawe CS, Ellis KS, Cairns CJ, Longmate A (2009) Reduction of ventilator-associated pneumonia: active versus passive guideline implementation. Intensive Care Med 35:1180–1186PubMedCrossRefGoogle Scholar
  21. 21.
    Rello J, Lode H, Cornaglia G et al (2010) A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med 36:773–780PubMedCrossRefGoogle Scholar
  22. 22.
    Gastmeier P, Sohr D, Geffers C et al (2009) Early- and late-onset pneumonia: is this still a useful classification? Antimicrob Agents Chemother 53:2714–2718PubMedCrossRefGoogle Scholar
  23. 23.
    Lorenz J, Bodmann KF, Bauer TT et al (2003) Nosocomial pneumonia: prevention, diagnosis, treatment. Pneumologie 57:532–545PubMedCrossRefGoogle Scholar
  24. 24.
    Singh N, Rogers P, Atwood CW et al (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–511PubMedGoogle Scholar
  25. 25.
    Schuetz P, Christ-Crain M, Thomann R et al (2009) Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 302:1059–1066PubMedCrossRefGoogle Scholar
  26. 26.
    Ramirez P, Garcia MA, Ferrer M et al (2008) Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J 31:356–362PubMedCrossRefGoogle Scholar
  27. 27.
    Jung B, Embriaco N, Roux F et al (2010) Microbiogical data, but not procalcitonin improve the accuracy of the clinical pulmonary infection score. Intensive Care Med 36:790–798PubMedCrossRefGoogle Scholar
  28. 28.
    Gibot S, Cravoisy A, Levy B et al (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350:451–458PubMedCrossRefGoogle Scholar
  29. 29.
    Anand NJ, Zuick S, Klesney-Tait J, Kollef MH (2009) Diagnostic implications of soluble triggering receptor expressed on myeloid cells-1 in BAL fluid of patients with pulmonary infiltrates in the ICU. Chest 135:641–647PubMedCrossRefGoogle Scholar
  30. 30.
    Michel F, Franceschini B, Berger P et al (2005) Early antibiotic treatment for BAL-confirmed ventilator-associated pneumonia: a role for routine endotracheal aspirate cultures. Chest 127:589–597PubMedCrossRefGoogle Scholar
  31. 31.
    Torres A, El-Ebiary M (2000) Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest 117 (4 Suppl 2):198S–202SPubMedCrossRefGoogle Scholar
  32. 32.
    Cook D, Mandell L (2000) Endotracheal aspiration in the diagnosis of ventilator-associated pneumonia. Chest 117 (4 Suppl 2):195S–197SPubMedCrossRefGoogle Scholar
  33. 33.
    Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355:2619–2630CrossRefGoogle Scholar
  34. 34.
    Bouza E, Torres MV, Radice C et al (2007) Direct E-test (AB Biodisk) of respiratory samples improves antimicrobial use in ventilator-associated pneumonia. Clin Infect Dis 44:382–387PubMedCrossRefGoogle Scholar
  35. 35.
    Bright JJ, Claydon MA, Soufian M, Gordon DB (2002) Rapid typing of bacteria using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry and pattern recognition software. J Microbiol Methods 48:127–138PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Zentrum Anästhesiologie, Rettungs- und IntensivmedizinUniversitätsmedizin GöttingenGöttingenDeutschland

Personalised recommendations