Advertisement

Der Anaesthesist

, Volume 58, Issue 11, pp 1085–1096 | Cite as

Hämodynamisches Monitoring bei Einlungenventilation

  • S. Haas
  • R. Kiefmann
  • V. Eichhorn
  • A.E. Goetz
  • D.A. ReuterEmail author
Leitthema

Zusammenfassung

Die Einlungenventilation (ELV) führt sowohl zu Beeinträchtigungen des Gasaustausches als auch zu komplexen Veränderungen der Herz-Kreislauf-Situation. Insbesondere bei kardiopulmonal vorerkrankten Patienten können diese Veränderungen klinische Relevanz durch Oxygenierungsstörungen und hämodynamische Instabilität erlangen. Die Konsequenzen auf den alveolären Gasaustausch unter ELV wurden in zahlreichen experimentellen und klinischen Studien untersucht. In weiten Bereichen unerforscht sind bislang jedoch die hämodynamischen Konsequenzen der ELV. Auch existieren keine Empfehlungen, welches Verfahren des erweiterten hämodynamischen Monitorings (EHM) zum Erfassen dieser hämodynamischen Veränderungen unter ELV zu bevorzugen ist. Viele Fragen in Bezug auf Einsatzmöglichkeiten und Wertigkeit dieses EHM bei ELV bleiben offen. Dieser Beitrag soll die aktuelle Literatur zu diesem Thema kritisch beleuchten und dazu beitragen, Strategien zu entwickeln, welche Form des EHM bei der ELV klinisch sinnvoll einzusetzen ist.

Schlüsselwörter

Einlungenventilation Hämodynamik Monitoring Pathophysiologie Thermodilution 

Abkürzungen

CPAP

„continuous positive airway pressure“ (kontinuierlich positiver Atemwegsdruck)

EHM

erweitertes hämodynamisches Monitoring

ELV

Einlungenventilation

EVLW

extravaskuläres Lungenwasser

GEDV

gesamtenddiastolisches Volumen

HPV

hypoxische pulmonale Vasokonstriktion

HZV

Herzzeitvolumen

ITBV

intrathorakales Blutvolumen

ITTV

intrathorakales Thermovolumen

PAK

Pulmonalarterienkatheter

PAP

„pulmonary arterial pressure“ (pulmonalarterieller Druck)

PAOP

„pulmonary artery occlusion pressure“ (pulmonalarterieller Verschlussdruck)

PBV

pulmonales Bluvolumen

PEEP

„positive end-expiratory pressure“ (positiv-endexspiratorischer Druck)

PPV

Pulsdruckvariation

PTV

pulmonales Thermovolumen

PVR

„pulmonary vascular resistance“ (pulmonalvaskulärer Widerstand)

SVR

systemvaskulärer Widerstand

SVV

Schlagvolumenvariation

TEE

transösophageale Echokardiographie

VATS

videoassistierte Thorakoskopie

ZVD

zentralvenöser Druck

Hemodynamic monitoring in one-lung ventilation

Abstract

One-lung ventilation causes adverse effects in pulmonary gas exchange and cardiocirculatory function. These adverse effects become particularly important for patients with underlying cardiopulmonary comorbidities. Alterations in pulmonary gas exchange have been investigated in several experimental and clinical trials. However, the hemodynamic consequences of one-lung ventilation are to a great extent unknown. Furthermore, no conclusive recommendations exist as to which kind of hemodynamic monitoring should be preferred in the situation of one-lung ventilation. Many issues regarding hemodynamic monitoring in one-lung ventilation remain unacknowledged. This article will review the current literature on hemodynamic monitoring in one-lung ventilation in order to derive recommendations for the application of hemodynamic monitoring in this specific peri-operative situation.

Keywords

One-lung ventilation Hemodynamics Monitoring Pathophysiology Thermodilution 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung/en hin: Beratertätigkeit für die Fa. Pulsion Medical Systems, München.

Literatur

  1. 1.
    Benumof JL (1991) Anästhesie in der Thoraxchirurgie. Fischer, StuttgartGoogle Scholar
  2. 2.
    Tusman G, Böhm SH, Sipmann FS, Maisch S (2004) Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg 98:1604–1609CrossRefPubMedGoogle Scholar
  3. 3.
    Farhi LE, Sheehan DW (1990) Pulmonary circulation and systemic circulation: similar problems, different solutions. Adv Exp Med Biol 277:579–586PubMedGoogle Scholar
  4. 4.
    Weir EK, López-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055CrossRefPubMedGoogle Scholar
  5. 5.
    Marshall BE, Marshall C (1980) Continuity of response to hypoxic pulmonary vasoconstriction. J Appl Physiol 49:189–196PubMedGoogle Scholar
  6. 6.
    Archer S, Michelakis E (2002) The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox O(2) sensors and controversies. News Physiol Sci 17:131–137PubMedGoogle Scholar
  7. 7.
    Benumof JL (1986) Isoflurane anesthesia and arterial oxygenation during one-lung ventilation. Anesthesiology 64:419–422CrossRefPubMedGoogle Scholar
  8. 8.
    Benumof JL (1985) One-lung-ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg 64:821–833CrossRefPubMedGoogle Scholar
  9. 9.
    Malmkvist G, Fletcher R, Nordström L, Werner O (1989) Effects of lung surgery and one-lung ventilation on pulmonary arterial pressure, venous admixture and immediate postoperative lung function. Br J Anaesth 63:696–701CrossRefPubMedGoogle Scholar
  10. 10.
    Malmkvist G, Fletcher R, Nordström L, Werner O (1989) Effect of pulmonary arterial pressure on venous admixture during thoracotomy and one-lung ventilation. J Cardiothorac Anesth 3 [5 Suppl 1]:36Google Scholar
  11. 11.
    Leach RM, Treacher DF (1995) Clinical aspects of hypoxic pulmonary vasoconstriction. Exp Physiol 80:865–875PubMedGoogle Scholar
  12. 12.
    Levin AI, Coetzee JF, Coetzee A (2008) Arterial oxygenation and one-lung anesthesia. Curr Opin Anaesthesiol 21:28–36CrossRefPubMedGoogle Scholar
  13. 13.
    Nomoto Y, Kawamura M (1989) Pulmonary gas exchange effects by nitroglycerine, dopamine and dobutamine during one-lung ventilation in man. Can J Anaesth 36:273–277CrossRefPubMedGoogle Scholar
  14. 14.
    Mathru M, Dries DJ, Kanuri D et al (1990) Effect of cardiac output on gas exchange in one-lung atelectasis. Chest 97:1121–1124CrossRefPubMedGoogle Scholar
  15. 15.
    Russell WJ, James MF (2004) The effects on arterial haemoglobin oxygen saturation and on shunt of increasing cardiac output with dopamine or dobutamine during one-lung ventilation. Anaesth Intensive Care 32:644–648PubMedGoogle Scholar
  16. 16.
    Russell WJ, James MF (2000) The effects on increasing cardiac output with adrenaline or isoprenaline on arterial haemoglobin oxygen saturation and shunt during one-lung ventilation. Anaesth Intensive Care 28:636–641PubMedGoogle Scholar
  17. 17.
    Benumof JL, Wahrenbrock EA (1975) Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol 38:846–850PubMedGoogle Scholar
  18. 18.
    Galvin I, Drummond GB, Nirmalan M (2007) Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 98:420–428CrossRefPubMedGoogle Scholar
  19. 19.
    Sticher J, Müller M, Scholz S et al (2001) Controlled hypercapnia during one-lung ventilation in patients undergoing pulmonary resection. Acta Anaesthesiol Scand 45:842–847CrossRefPubMedGoogle Scholar
  20. 20.
    Zollinger A, Zaugg M, Weder W et al (1997) Video-assisted thoracoscopic volume reduction surgery in patients with diffuse pulmonary emphysema: gas exchange and anesthesiological management. Anesth Analg 84:845–851CrossRefPubMedGoogle Scholar
  21. 21.
    Lohser J (2008) Evidence-based management of one-lung ventilation. Anesthesiol Clin 26(2):241–272CrossRefPubMedGoogle Scholar
  22. 22.
    Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ (1990) Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J 63:45–49CrossRefPubMedGoogle Scholar
  23. 23.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging and functional assessment of the right ventricle. Circulation 18(117):1436–1448CrossRefGoogle Scholar
  24. 24.
    Slinger PD, Lesiuk L (1998) Flow resistances of disposable double-lumen, single-lumen and Univent tubes. J Cardiothorac Vasc Anesth 12:142–144CrossRefPubMedGoogle Scholar
  25. 25.
    Slimani J, Russell WJ, Jurisevic C (2004) An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung. Anaesth Intensive Care 32:756–760PubMedGoogle Scholar
  26. 26.
    Bein B, Scholz J, Tonner P (2005) Hämodynamisches Monitoring: Standards und Fehlerquellen. Anaesthesiol Intensivmed 46:179–186Google Scholar
  27. 27.
    Kastrup M, Markewitz A, Spies C et al (2007) Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand 51:347–358CrossRefPubMedGoogle Scholar
  28. 28.
    Cruz K, Franklin C (2001) The pulmonary artery catheter: uses and controversies. Crit Care Clin 17:271–291CrossRefPubMedGoogle Scholar
  29. 29.
    Boucek C, Klain M, Obuchowski N, Molner R (1992) Pulmonary artery catheter monitoring during single-lung ventilation in dogs. J Clin Monit 8:209–215CrossRefPubMedGoogle Scholar
  30. 30.
    Nelson LD (1996) The new pulmonary arterial catheters. Right ventricular ejection fraction and continuous cardiac output. Crit Care Clin 12:795–818CrossRefPubMedGoogle Scholar
  31. 31.
    Haller M, Zöllner C, Briegel J, Forst H (1995) Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 23:860–866CrossRefPubMedGoogle Scholar
  32. 32.
    Aranda M, Mihm FG, Garrett S et al (1998) Continuous cardiac output catheters: delay in in vitro response time after controlled flow changes. Anesthesiology 89:1592–1595CrossRefPubMedGoogle Scholar
  33. 33.
    Siegel LC, Hennessy MM, Pearl RG (1996) Delayed time response of the continuous cardiac output pulmonary artery catheter. Anesth Analg 83:1173–1177CrossRefPubMedGoogle Scholar
  34. 34.
    Swan HJ, Ganz W, Forrester J et al (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRefGoogle Scholar
  35. 35.
    Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908CrossRefPubMedGoogle Scholar
  36. 36.
    Sakka SG, Rühl CC, Pfeiffer UJ et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187CrossRefPubMedGoogle Scholar
  37. 37.
    Reuter DA, Felbinger TW, Moerstedt K et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195CrossRefPubMedGoogle Scholar
  38. 38.
    Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33:1428–1429CrossRefGoogle Scholar
  39. 39.
    Isakow W, Schuster DP (2006) Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bedside alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol 291:1118–1131CrossRefGoogle Scholar
  40. 40.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086CrossRefPubMedGoogle Scholar
  41. 41.
    Hüter L, Schwarzkopf K, Preussler NP et al (2004) Measuring cardiac output in one-lung ventilation: a comparison of pulmonary artery and transpulmonary aortic measurements in pigs. J Cardiothorac Vasc Anesth 18:190–193CrossRefPubMedGoogle Scholar
  42. 42.
    Oppenheimer L, Elings VB, Lewis FR (1979) Thermal-dye lung water measurements: effects of edema and embolization. J Surg Res 26:504–512CrossRefPubMedGoogle Scholar
  43. 43.
    Beckett RC, Gray BA (1982) Effect of atelectasis and embolization on extravascular thermal volume of the lung. J Appl Physiol 53:1614–1619PubMedGoogle Scholar
  44. 44.
    Cheong KF (1999) Re-expansion pulmonary oedema following one-lung ventilation – a case report. Ann Acad Med Singapore 28:572–573PubMedGoogle Scholar
  45. 45.
    Asao Y, Kobayashi M, Tsubaki N et al (2003) A case of re-expansion pulmonary edema after one lung ventilation for the radical operation of lung cancer. Masui 52:154–157PubMedGoogle Scholar
  46. 46.
    Cheng YJ, Chan KC, Chien CT et al (2006) Oxidative stress during 1-lung ventilation. J Thorac Cardiovasc Surg 132:513–518CrossRefPubMedGoogle Scholar
  47. 47.
    Michard F (2007) Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med 35:1186–1192CrossRefPubMedGoogle Scholar
  48. 48.
    Pohl T, Kozieras J, Sakka SG (2008) Influence of extravascular lung water on transpulmonary thermodilution-derived cardiac output measurement. Intensive Care Med 34:533–537CrossRefPubMedGoogle Scholar
  49. 49.
    Schuster DP, Anderson C, Kozlowski J, Lange N (2002) Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med 43:863–870PubMedGoogle Scholar
  50. 50.
    Sato Y, Motoyama S, Maruyama K et al (2007) Extravascular lung water measured using single transpulmonary thermodilution reflects perioperative pulmonary edema induced by esophagectomy. Eur Surg Res 39:7–13CrossRefPubMedGoogle Scholar
  51. 51.
    Oshima K, Kunimoto F, Hinohara H et al (2008) Evaluation of respiratory status in patients after thoracic esophagectomy using PiCCO system. Ann Thorac Cardiovasc Surg 14:283–288PubMedGoogle Scholar
  52. 52.
    Schreiber T, Hüter L, Schwarzkopf K et al (2001) Lung perfusion affects preload assessment and lung water calculation with the transpulmonary double indicator method. Intensive Care Med 27:1814–1818CrossRefPubMedGoogle Scholar
  53. 53.
    Wesseling KH, Purschke R, Smith NT et al (1976) A computer module for the continuous monitoring of cardiac output in the operating theatre and the ICU. Acta Anaesthesiol Belg 27 [Suppl]:327–341Google Scholar
  54. 54.
    Kubitz JC, Annecke T, Forkl S et al (2007) Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Anaesth 98:591–597CrossRefPubMedGoogle Scholar
  55. 55.
    Compton FD, Zukunft B, Hoffmann C et al (2008) Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth 100:451–456CrossRefPubMedGoogle Scholar
  56. 56.
    Mayer J, Boldt J, Beschmann R et al (2009) Uncalibrated arterial pressure waveform analysis for less-invasive cardiac output determination in obese patients undergoing cardiac surgery. Br J Anaesth 103:185–190CrossRefPubMedGoogle Scholar
  57. 57.
    Hofer CK, Button D, Weibel L et al (2009) Uncalibrated radial and femoral arterial pressure waveform analysis for continuous cardiac output measurement: an evaluation in cardiac surgery patients. J Cardiothorac Vasc Anesth, DOI: 10.1053/j.jvca.2009.06.003Google Scholar
  58. 58.
    Kubitz JC, Annecke T, Kemming GI et al (2006) The influence of positive end-expiratory pressure on stroke volume variation and central blood volume during open and closed chest conditions. Eur J Cardiothorac Surg 30:90–95CrossRefPubMedGoogle Scholar
  59. 59.
    Reuter DA, Goepfert MS, Goresch T et al (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94:318–323CrossRefPubMedGoogle Scholar
  60. 60.
    de Waal EE, Rex S, Kruitwagen CL et al (2009) Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med 37:510–515CrossRefGoogle Scholar
  61. 61.
    Rex S, Schälte G, Schroth S et al (2007) Limitations of arterial pulse pressure variation and left ventricular stroke volume variation in estimating cardiac pre-load during open heart surgery. Acta Anaesthesiol Scand 51:1258–1267PubMedGoogle Scholar
  62. 62.
    Laupland KB, Bands CJ (2002) Utility of esophageal Doppler as a minimal invasive monitor: a review. Can J Anaesth 49:393–401CrossRefPubMedGoogle Scholar
  63. 63.
    Serra E, Feltracco P, Barbieri S et al (2007) Transesophageal echocardiography during lung transplantation. Transplant Proc 39:1981–1982CrossRefPubMedGoogle Scholar
  64. 64.
    Conacher ID, Velasquez H, Snowden C (2008) Significance of tricuspid valve dysfunction as a consequence of one-lung ventilation. Br J Anaesth 101:283CrossRefPubMedGoogle Scholar
  65. 65.
    Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–217CrossRefPubMedGoogle Scholar
  66. 66.
    Weyman (1982) Cross sectional echocardiography. In: Fibinger L (ed) Philadelphia, pp 501–502Google Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • S. Haas
    • 1
  • R. Kiefmann
    • 1
  • V. Eichhorn
    • 1
  • A.E. Goetz
    • 1
  • D.A. Reuter
    • 1
    Email author
  1. 1.Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und IntensivmedizinUniversitätsklinikum Hamburg-EppendorfHamburgDeutschland

Personalised recommendations