Der Anaesthesist

, Volume 58, Issue 8, pp 829–849 | Cite as

Akute perioperative Störungen der Nierenfunktion

Strategien zur Prävention und Therapie
CME - Weiterbildung - Zertifizierte Fortbildung


Die zunehmende Lebenserwartung in den Industrienationen lässt die Zahl der Krankenhausbehandlungen alter und hoch betagter Menschen steigen. Immer häufiger werden auch komplexe Operationen bei diesen Patienten durchgeführt. Nierenfunktionsstörungen in der perioperativen Situation sind mit einer erheblichen Morbiditäts- und Letalitätsrate verbunden. Eine akute Nierenschädigung, im neueren Sprachgebrauch eine „acute kidney injury“ (AKI), ist bei kritisch kranken Patienten nahezu immer Bestandteil eines Multiorgandysfunktionssyndroms (MODS). Die Behandlungsstrategie sollte sich am Grad der Organfunktionsstörung orientieren. Meist ist aber das Stadium der Funktionsstörung nicht bekannt, und so wird oft das therapeutisch nutzbare Intervall verpasst. Nahezu regelhaft findet bei allen Patienten die gleiche Therapie Anwendung: Flüssigkeitszufuhr und Diuretikumgabe – häufig unter der Vorstellung: „Die Nieren müssen gespült werden!“. Eine vereinheitlichende Klassifikation des Kontinuums der Nierenfunktionsstörungen anhand der RIFLE-Kriterien („risk, injury, failure, loss, endstage kidney disease“) kann helfen, Frühphasen der Nierenfunktionsstörung zu erkennen, um entsprechend therapeutisch reagieren zu können, und den Einsatz konservativer Behandlungsstrategien kritisch zu hinterfragen bzw. zu optimieren.


Entstehungsmechanismus RIFLE-Kriterien Diuretika Flüssigkeitszufuhr Volumentherapie 

Acute perioperative disturbances of renal function

Strategies for prevention and therapy


The increasing life expectancy in industrial nations leads to an increase in the number of elderly and aged persons treated in hospital. Increasingly more complex operations are being carried out on this group of patients. Renal dysfunction in the preoperative situation increases morbidity and mortality. Acute kidney injury (AKI) is nearly always part of a multi-organ dysfunction syndrome in critically ill patients. The treatment strategy of the AKI should be oriented to the degree of organ dysfunction. However, the stage of organ dysfunction is mostly unknown so that the therapeutically exploitable interval is often missed. The same therapy is practically always used for all patients: administration of fluids and diuretics often under the premise of“the kidneys must be rinsed”. A unified classification of the continuation of kidney function disorders using the RIFLE criteria (risk, injury, failure, loss, endstage kidney disease) can assist recognition of early stages of kidney failure in order to react correspondingly with therapeutic measures and to critically question or optimize the use of conservative treatment strategies.


Causal mechanism RIFLE criteria Diuretics Fluid administration Volume therapy 



Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.


  1. 1.
    Bagshaw SM, Bellomo R, Kellum JA (2008) Oliguria, volume overload and loop diuretics. Crit Care Med 36:S172–S178PubMedCrossRefGoogle Scholar
  2. 2.
    Bellomo R, Ronco C, Kellum J et al (2004) Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212PubMedCrossRefGoogle Scholar
  3. 3.
    Boldt J (2009) PRO: hydroxyethylstarch can be safely used in the intensive care patient – the renal debate. Intensive Care Med 35:1331–1336PubMedCrossRefGoogle Scholar
  4. 4.
    Bonventris JV, Brezis M, Siegel S et al (1998) Acute renal failure I: relative importance of proximal vs. distal tubular injury. Am J Physiol 275:F623–F632Google Scholar
  5. 5.
    Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–72PubMedCrossRefGoogle Scholar
  6. 6.
    Brezis M, Agmon Y, Epstein FH (1994) Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol 294:F1059–F1062Google Scholar
  7. 7.
    Brienza N, Giglio MT, Marucci M, Fiore T (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090PubMedCrossRefGoogle Scholar
  8. 8.
    Chertow GM, Burdick E, Honour M et al (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370PubMedCrossRefGoogle Scholar
  9. 9.
    Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016PubMedCrossRefGoogle Scholar
  10. 10.
    Dasta JF, Kane-Gill SL, Durtschi AJ et al (2008) Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol Dial Transplant 23:1970–1974PubMedCrossRefGoogle Scholar
  11. 11.
    Di Giantomasso D, Morimatsu H, May CN, Bellomo R (2004) Increasing renal blood flow: low dose dopamine or medium-dose norepinephrine. Chest 125:2260–2267CrossRefGoogle Scholar
  12. 12.
    Duvoux C, Zanditenas D, Hezode C et al (2002) Effects of noradrenalin and albumin in patients with type I hepatorenal syndrome: a pilot study. Hepatology 36:374–380PubMedCrossRefGoogle Scholar
  13. 13.
    Eraly S, Bush K, Sampogna R et al (2004) The molecular pharmacology of the organic anion transporter. From DNA to FDA. Mol Pharmacol 65:479–487PubMedCrossRefGoogle Scholar
  14. 14.
    Esrailian E, Pantangco ER, Kyulo NL et al (2004) Octreotide/midodrine therapy significantly improves renal function and 30-day survival in patients with type I hepatorenal syndrome. Dig Dis Sci 52:742–748CrossRefGoogle Scholar
  15. 15.
    Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872PubMedCrossRefGoogle Scholar
  16. 16.
    Gheun-Ho K, Ki Young N, So-Young K et al (2003) Up-regulation of organic anion transporter 1 protein is induced by chronic furosemide and hydrochlorothiazide infusion in rat kidney. Nephrol Dial Transplant 18:1505–1511CrossRefGoogle Scholar
  17. 17.
    Goldenberg I, Matetzky S (2005) Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies. CMAJ 172:1461–1471PubMedGoogle Scholar
  18. 18.
    Habib RH, Zacharias A, Schwann TA et al (2005) Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med 33:1749–1756PubMedCrossRefGoogle Scholar
  19. 19.
    Hartog C, Reinhart K (2009) CONTRA: Hydroxyethyl starch solutions are unsafe in critically ill patients. Intensive Care Med 35:1337–1342PubMedCrossRefGoogle Scholar
  20. 20.
    Heyman SN, Rosenberger C, Rosen S (2005) Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant 20 [Suppl 1]:i6–i11Google Scholar
  21. 21.
    Himmelfarb J (2007) Continuous renal replacement therapy in acute renal failure: critical assessment is required. Clin J Am Soc Nephrol 2:385–389PubMedCrossRefGoogle Scholar
  22. 22.
    Ho KM, Sheridan DJ (2006) Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333:420–426PubMedCrossRefGoogle Scholar
  23. 23.
    Hoste EAJ, Clermont G, Kersten A et al (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10:R73–R82PubMedCrossRefGoogle Scholar
  24. 24.
    Hüter L, Simon TP, Weinmann L et al (2009) Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care 13:R23PubMedCrossRefGoogle Scholar
  25. 25.
    John S, Eckardt KU (2007) Renal replacement strategies in the ICU. Chest 132:1979–1982CrossRefGoogle Scholar
  26. 26.
    Koch CG, Li L, Duncan AI et al (2006) Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med 34:1608–1616PubMedCrossRefGoogle Scholar
  27. 27.
    Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699PubMedCrossRefGoogle Scholar
  28. 28.
    Lassnigg A, Donner E, Grubhofer G et al (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11:97–104PubMedGoogle Scholar
  29. 29.
    Lee DB, Huang E, Ward HJ (2006) Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol 290:F20–F34PubMedCrossRefGoogle Scholar
  30. 30.
    Levy EM, Viscoli CM, Horwitz RI (1996) Effect of acute renal failure on mortality. A cohort analysis. JAMA 275:1489–1494PubMedCrossRefGoogle Scholar
  31. 31.
    Maertens S, Van Den Noortgate NJ (2007) Kidney in old age. Acta Clin Belg 63:514–520Google Scholar
  32. 32.
    Mahesh B, Yim B, Robson D et al (2008) Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg 33:370–376PubMedCrossRefGoogle Scholar
  33. 33.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178PubMedCrossRefGoogle Scholar
  34. 34.
    Morris C, Boyd A, Reynolds N (2009) Should we really be more „balanced“ in our fluid prescribing? Anaesthesia 64:703–705PubMedCrossRefGoogle Scholar
  35. 35.
    Navar LG (1998) Regulation of renal hemodynamics. Adv Physiol Educ 275:S221–S235Google Scholar
  36. 36.
    Oppert M, Engel C, Brunkhorst FM (2008) Acute renal failure in patients with severe sepsis and septic shock: results from the German Prevalence Study. Nephrol Dial Transplant 23:904–909PubMedCrossRefGoogle Scholar
  37. 37.
    Pannu N, Klarenbach S, Wiebe N et al (2008) Renal replacement therapy in patients with acute renal failure – A systematic review. JAMA 299:793–805PubMedCrossRefGoogle Scholar
  38. 38.
    Papathanassoglou ED, Moynihan JA, Ackermann MH (2000) Does programmed cell death play a role in the development of multiple organ dysfunction in critically ill patients? A review and a theoretical framework. Crit Care Med 28:537–549PubMedCrossRefGoogle Scholar
  39. 39.
    Pavelsky P (2008) Indications and timing of renal replacement therapy in acute kidney injury. Crit Care Med 36 [Suppl 4]:S224–S228Google Scholar
  40. 40.
    Payen D, De Pont AC, Sakr Y et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74PubMedCrossRefGoogle Scholar
  41. 41.
    Perel P, Roberts I (2007) Colloids vs. crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 4:CD000567PubMedGoogle Scholar
  42. 42.
    Pozzi M, Carugo S, Boari G et al (1997) Evidence of functional and structural cardiac abnormalities in cirrhotic patients with and without ascites. Hepatology 26:1131–1137PubMedGoogle Scholar
  43. 43.
    Reuter DA, Felbinger TW, Kilger E et al (2002) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth 88:124–126PubMedCrossRefGoogle Scholar
  44. 44.
    Ricci Z, Cruz D, Ronco C (2008) The RIFLE criteria and mortality in acute kidney injury. Kidney Int 73:538–546PubMedCrossRefGoogle Scholar
  45. 45.
    Rioux JP, Lessard M, De Bortoli B et al (2009) Pentastarch 10% (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 37:1293–1298PubMedCrossRefGoogle Scholar
  46. 46.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  47. 47.
    Sakr Y, Vincent JL, Reinhart K et al (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung Injury. Chest 128:3098–3108PubMedCrossRefGoogle Scholar
  48. 48.
    Schortgen F, Girou E, Deye N et al (2009) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168CrossRefGoogle Scholar
  49. 49.
    Schrier RW (2007) Decreased effective blood volume in edematous disorders: what does this mean? J Am Soc Nephrol 188:2028–2031CrossRefGoogle Scholar
  50. 50.
    Seabra VF, Balk EM, Liangos O et al (2008) Timing of renal replacement therapy initiation in acute renal failure: a metaanalysis. Am J Kidney Dis 52:272–284PubMedCrossRefGoogle Scholar
  51. 51.
    Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838PubMedCrossRefGoogle Scholar
  52. 52.
    Shu-Min L, Chien-Da H, Horng-Chyuan L et al (2006) A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26:551–557CrossRefGoogle Scholar
  53. 53.
    Solomon R, Werner C, Mann D et al (1994) Effects of saline, mannitol and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331:1416–1420PubMedCrossRefGoogle Scholar
  54. 54.
    Sort P, Navasa M, Arroyo V (1999) Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341:403–409PubMedCrossRefGoogle Scholar
  55. 55.
    Teboul JL, Monnet X (2008) Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 14:334–339PubMedCrossRefGoogle Scholar
  56. 56.
    The VA/NIH Acute Renal Failure Trial Network (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20CrossRefGoogle Scholar
  57. 57.
    Townsend DR, Bagshaw SM (2008) New insights on intravenous fluids, diuretics and acute kidney injury. Nephron Clin Pract 109:206–215CrossRefGoogle Scholar
  58. 58.
    Uchino S, Kellum JA, Bellomo R (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818PubMedCrossRefGoogle Scholar
  59. 59.
    Van Biesen W, Yegenaga I, Vanholder R et al (2005) Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J Nephrol 18:54–60Google Scholar
  60. 60.
    Van den Noortgate N, Janssen W, Lameire N, Afschrift M (2001) Renal function in the oldest-old on an acute geriatric ward. Int Urol Nephrol 32:531–537CrossRefGoogle Scholar
  61. 61.
    Venkataraman R, Kellum JA (2007) Prevention of acute renal failure. Chest 131:300–308PubMedCrossRefGoogle Scholar
  62. 62.
    Warren JD, Blumberg PC, Thompson PD (2002) Rhabdomyolysis: a review. Muscle Nerve 25:332–347PubMedCrossRefGoogle Scholar
  63. 63.
    Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery vs. central-venous-catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224PubMedCrossRefGoogle Scholar
  64. 64.
    Wilcox CS (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71:726–735PubMedCrossRefGoogle Scholar
  65. 65.
    Wilkes NJ, Woolf R, Mutch M et al (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang W, Edwards A (2002) Oxygen transport across vasa recta in the renal medulla. Am J Physiol Heart Circ Physiol 283:1042–1055Google Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und Operative IntensivmedizinKlinikum AugsburgAugsburgDeutschland

Personalised recommendations