Der Anaesthesist

, Volume 58, Issue 4, pp 415–420

Arterielle Pulskurve und Volumenstatus

Medizin aktuell
  • 875 Downloads

Zusammenfassung

Wird ein Volumenbolus die Hämodynamik verbessern, oder gefährdet die Zufuhr von noch mehr Flüssigkeit den Patienten? Mit diesen Fragen sehen sich Anästhesisten tagtäglich konfrontiert. Der vorliegende Beitrag beginnt mit einer Erörterung der physiologischen und der pathophysiologischen Grundlagen der beiden widerstreitenden Konzepte zum Flüssigkeitsmanagement. Nach einer kritischen Würdigung traditioneller Überwachungsmethoden des Volumenstatus folgt die Diskussion der Herz-Lungen-Interaktion als Einflussgröße auf die arterielle Pulskurve. Der daraus abgeleitete Überwachungsparameter „difference in pulse pressure“ (dPP), die beatmungsbedingte Schwankung der Pulsdruckkurve, wird vorgestellt. Der Beitrag schließt mit der Beschreibung des dPP-Grenzwerts von 13% als Prädiktor der Volumenreagibilität, verschiedener Messmethoden von dPP und klinisch relevanter Einflussfaktoren.

Schlüsselwörter

Arterie „Difference in pulse pressure“ Flüssigkeitstherapie Pulsdruck Überwachung 

Arterial pressure curve and fluid status

Abstract

Fluid optimization is a major contributor to improved outcome in patients. Unfortunately, anesthesiologists are often in doubt whether an additional fluid bolus will improve the hemodynamics of the patient or not as excess fluid may even jeopardize the condition. This article discusses physiological concepts of liberal versus restrictive fluid management followed by a discussion on the respective capabilities of various monitors to predict fluid responsiveness. The parameter difference in pulse pressure (dPP), derived from heart-lung interaction in mechanically ventilated patients is discussed in detail. The dPP cutoff value of 13% to predict fluid responsiveness is presented together with several assessment techniques of dPP. Finally, confounding variables on dPP measurements, such as ventilation parameters, pneumoperitoneum and use of norepinephrine are also mentioned.

Keywords

Arterial line Difference in pulse pressure Fluid management Monitoring Pulse pressure 

Literatur

  1. 1.
    Boldt J (2003) New light on intravascular volume replacement regimens: what did we learn from the past three years? Anesth Analg 97:1595–1604PubMedCrossRefGoogle Scholar
  2. 2.
    Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648PubMedCrossRefGoogle Scholar
  3. 3.
    Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–1999PubMedCrossRefGoogle Scholar
  4. 4.
    Cannesson M, Attof Y, Rosamel P et al (2007) Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 106:1105–1111PubMedCrossRefGoogle Scholar
  5. 5.
    De Backer D, Heenen S, Piagnerelli M et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523CrossRefGoogle Scholar
  6. 6.
    Fujita Y, Sari A, Yamamoto T (2003) On-line monitoring of systolic pressure variation. Anesth Analg 96:1529–1530PubMedCrossRefGoogle Scholar
  7. 7.
    Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826PubMedCrossRefGoogle Scholar
  8. 8.
    Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220PubMedCrossRefGoogle Scholar
  9. 9.
    Guenoun T, Aka EJ, Journois D et al (2006) Effects of laparoscopic pneumoperitoneum and changes in position on arterial pulse pressure wave-form: comparison between morbidly obese and normal-weight patients. Obes Surg 16:1075–1081PubMedCrossRefGoogle Scholar
  10. 10.
    Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279:H2815–H2823PubMedGoogle Scholar
  11. 11.
    Kramer A, Zygun D, Hawes H et al (2004) Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest 126:1563–1568PubMedCrossRefGoogle Scholar
  12. 12.
    Kussmaul A (1873) Über schwielige Mediastino-Perikarditis und den paradoxen Puls. Berlin Klin Wochenschr 10: 433, 445, 461Google Scholar
  13. 13.
    Kuntscher MV, Czermak C, Blome-Eberwein S et al (2003) Transcardiopulmonary thermal dye versus single thermodilution methods for assessment of intrathoracic blood volume and extravascular lung water in major burn resuscitation. J Burn Care Rehabil 24:142–147PubMedCrossRefGoogle Scholar
  14. 14.
    Massumi RA, Mason DT, Vera Z et al (1973) Reversed pulsus paradoxus. N Engl J Med 289:1272–1275PubMedGoogle Scholar
  15. 15.
    Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289PubMedCrossRefGoogle Scholar
  16. 16.
    Michard F, Boussat S, Chemla D et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  17. 17.
    Nisanevich V, Felsenstein I, Almogy G et al (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32PubMedCrossRefGoogle Scholar
  18. 18.
    Noblett SE, Snowden CP, Shenton BK, Horgan AF (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93:1069–1076PubMedCrossRefGoogle Scholar
  19. 19.
    Nouira S, Elatrous S, Dimassi S et al (2005) Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33:2339–2343PubMedCrossRefGoogle Scholar
  20. 20.
    Osman D, Ridel C, Ray P et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68PubMedCrossRefGoogle Scholar
  21. 21.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502PubMedCrossRefGoogle Scholar
  22. 22.
    Pestel GJ, Hiltebrand LB, Fukui K et al (2006) Assessing intravascular volume by difference in pulse pressure in pigs submitted to graded hemorrhage. Shock 26:391–395PubMedCrossRefGoogle Scholar
  23. 23.
    Pizov R, Cohen M, Weiss Y et al (1996) Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med 24:1381–1387PubMedCrossRefGoogle Scholar
  24. 24.
    Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the respiratory systolic variation test and static preload indicators. Br J Anaesth 95:746–755PubMedCrossRefGoogle Scholar
  25. 25.
    Roeck M, Jakob SM, Boehlen T et al (2003) Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med 29:1729–1735PubMedCrossRefGoogle Scholar
  26. 26.
    Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidlin D, Bettex D, Bernard E et al (2001) Transoesophageal echocardiography in cardiac and vascular surgery: implications and observer variability. Br J Anaesth 86:497–505PubMedCrossRefGoogle Scholar
  28. 28.
    Solus-Biguenet H, Fleyfel M, Tavernier B et al (2006) Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth 97:808–816PubMedCrossRefGoogle Scholar
  29. 29.
    Wakeling HG, McFall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95:634–642PubMedCrossRefGoogle Scholar
  30. 30.
    Weinger MB, Herndon OW, Gaba DM (1997) The effect of electronic record keeping and transesophageal echocardiography on task distribution, workload and vigilance during cardiac anesthesia. Anesthesiology 87:144–155; discussion 129A–130APubMedCrossRefGoogle Scholar
  31. 31.
    Wiesenack C, Prasser C, Rodig G, Keyl C (2003) Stroke volume variation as an indicator of fluid responsiveness using pulse contour analysis in mechanically ventilated patients. Anesth Analg 96:1254–1257PubMedCrossRefGoogle Scholar
  32. 32.
    Yamaji T, Ishibashi M, Takaku F (1985) Atrial natriuretic factor in human blood. J Clin Invest 76:1705–1709PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Klinik für AnästhesiologieUniversitätsmedizin der Johannes Gutenberg-UniversitätMainzDeutschland

Personalised recommendations