Advertisement

Der Anaesthesist

, Volume 58, Issue 3, pp 247–258 | Cite as

Neuromonitoring und Neuroprotektion in der Kardioanästhesie

Bundesweite Umfrage des Arbeitskreises Kardioanästhesie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin e.V.
  • G. ErdösEmail author
  • I. Tzanova
  • U. Schirmer
  • J. Ender
Originalien

Zusammenfassung

Fragestellung

Primäres Ziel dieser in deutschen kardioanästhesiologischen Abteilungen durchgeführten Umfrage war, die aktuelle Praxis von Neuromonitoring und Neuroprotektion zu erheben.

Methodik

Zwischen Oktober 2007 und Januar 2008 wurden hierzu Daten mithilfe eines 26 Punkte umfassenden, anonymisierten Fragebogens erhoben. Ermittelt wurden: präoperative Evaluation der hirnversorgenden Arterien, intraoperatives Neuromonitoring, zerebroprotektive Maßnahmen, Perfusionsmanagement während extrakorporaler Zirkulation, postoperative Erhebung des neurologischen Status und Aus-/Weiterbildung im zerebralen Monitoring.

Ergebnisse

55% der Fragebögen wurden mit folgenden Angaben beantwortet: präoperative Duplexsonographie der Hirngefäße in 90% der Kliniken; intraoperatives Neuromonitoring mithilfe der Elektroenzephalographie (EEG; 60%) bei Typ-A-Dissektionen (38,1%), bei elektiven Operationen an der thorakalen bzw. thorakoabdominellen Aorta (34,1% resp. 31,6%) und in der Karotischirurgie (43,2%), weiterhin Einsatz der Nahinfrarotspektroskopie (40%), Ableitung evozierter Potenziale (30%) und transkranielle Dopplersonographie (17,5%). Auch kombinierte Verfahren wurden angewandt. Während Bypass-, Klappen und minimal-invasiven Operationen erfolgt meistens kein Monitoring des Zentralnervensystems. Zur Zerebroprotektion werden die Kühlung des Patienten an Herz-Lungen-Maschine (HLM; 100%), externe Kühlung des Kopfes (65%), Gabe von Kortikosteroiden (58%), Barbituraten (50%) und Antiepileptika (10%) eingesetzt. Als neuroprotektive Anästhesieverfahren gelten Inhalationsanästhesie (32,5%; Favorit: Sevofluran 76,5%) und total intravenöse Anästhesie (20%; Favoriten: Propofol und Barbiturate mit je 46,2%). Standardmäßig kühlen 72,5% der Krankenhäuser die Patienten bei Operationen mit Herz-Kreislauf-Stillstand, 37,5% bei allen Operationen mit HLM. Unter normothermen Bedingungen entspricht in 84,6% der Kliniken der HLM-Fluss dem errechneten Herzzeitvolumen (HZV), der anzustrebende mittlere arterielle Druck (MAP) liegt bei 60–70 mmHg (43,9%) bzw. 50–60 mmHg (41,5%). Bei einer Körpertemperatur unter 18°C wird der HLM-Fluss unter das errechnete HZV gesenkt (70%), während in 27% der Kliniken normotherme Flussraten gefahren werden. Der bevorzugte MAP unter Hypothermie liegt zwischen 50 und 60 mmHg (59%). Intraoperatives Neuromonitoring wird im Narkoseprotokoll (77%) dokumentiert. Postoperativ wird der neurologische Status in 42,5% der Kliniken durch individuelle Einschätzung des Anästhesisten (77,5%) erhoben. Fortbildungen zum Thema Neuromonitoring werden in 32,5% der Kliniken regelmäßig organisiert, in 37,5% dem Arzt selbst überlassen.

Schlussfolgerung

Das kardioanästhesiologische Vorgehen in Deutschland ist im Bereich Neuromonitoring und neuroprotektive Therapie nicht standardisiert. Ein „multimodales Neuromonitoring“ wäre wünschenswert.

Schlüsselwörter

Neuromonitoring Neuroprotektion Perfusionsmanagement Kardioanästhesie Neurologisches Defizit 

Neuromonitoring and neuroprotection in cardiac anaesthesia

Nationwide survey conducted by the Cardiac Anaesthesia Working Group of the German Society of Anaesthesiology and Intensive Care Medicine

Abstract

Objective

The primary objective of this nationwide survey carried out in department of cardiac anesthesia in Germany was to identify current practice with regard to neuromonitoring und neuroprotection.

Methodology

The data are based on a questionnaire sent out to all departments of cardiac anesthesia in Germany between October 2007 und January 2008. The anonymized questionnaire contained 26 questions about the practice of preoperative evaluation of cerebral vessels, intra-operative use of neuromonitoring, the nature und application of cerebral protective measures, perfusion management during cardiopulmonary bypass, postoperative evaluation of neurological status, and training in the field of cerebral monitoring.

Results

Of the 80 mailed questionnaires 55% were returned and 90% of department evaluated cerebral vessels preoperatively with duplex ultrasound. The methods used for intra-operative neuromonitoring are electroencephalography (EEG, 60%) for type A dissections (38.1%), for elective surgery on the thoracic and thoraco-abdominal aorta (34.1% and 31.6%, respectively) and in carotid surgery (43.2%) near infrared spectroscopy (40%), evoked potentials (30%) and transcranial Doppler sonography (17.5%), with some centers using combined methods. In most departments the central nervous system is not subjected to monitoring during bypass surgery, heart valve surgery, or minimally invasive surgery. Cerebral protective measures used comprise patient cooling on cardio-pulmonary bypass (CPB 100%), extracorporeal cooling of the head (65%) and the administration of corticosteroids (58%), barbiturates (50%) and antiepileptic drugs (10%). Neuroprotective anesthesia consists of administering inhalation anesthetics (32.5%; sevoflurane 76.5%) and intravenous anesthesia (20%; propofol and barbiturates each accounting for 46.2%). Of the departments 72.5% cool patients as a standard procedure for surgery involving cardiovascular arrest and 37.5% during all surgery using CPB. In 84.6% of department CPB flow equals calculated cardiac output (CO) under normothermia, while the desired mean arterial pressure (MAP) varies between 60 and 70 mmHg (43.9%) and between 50 and 60 mmHg (41.5%), respectively. At body temperatures less than 18°C CPB flow is reduced below the calculated CO (70%) while 27% of departments use normothermic flow rates. The preferred MAP under hypothermia is between 50 and 60 mmHg (59%). The results of intra-operative neuromonitoring are documented on the anesthesia record (77%). In 42.5% of the departments postoperative neurological function is estimated by the anesthesiologist. Continuing education sessions pertaining to neuromonitoring are organized on a regular basis in 32.5% of the departments and in 37.5% individual physicians are responsible for their own neuromonitoring education.

Conclusion

The present survey data indicate that neuromonitoring and neuroprotective therapy during CPB is not standardized in cardiac anesthesiology departments in Germany. The systemic use of available methods to implement multimodal neuromonitoring would be desirable.

Keywords

Neuromonitoring Neuroprotection Perfusion management Cardiac anaesthesia Neurologic deficit 

Notes

Danksagung

Die Autoren bedanken sich bei antwortenden Herzzentren, die mit ihrer Mitarbeit diese Arbeit erst möglich gemacht haben.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Arom K, Cohen D, Strobl F (1989) Effect of intraoperative intervention on neurological outcome based on electroencephalographic monitoring during cardiopulmonary bypass. Ann Thorac Surg 48:476–483PubMedGoogle Scholar
  2. 2.
    Bickler PE, Fahlmann CS (2006) The inhaled anesthetic, isoflurane, enhances Ca2+-dependent survival signaling in cortical neurons and modulates MAP kinases, apoptosis proteins and transcription factors during hypoxia. Anesth Analg 103:419–429PubMedCrossRefGoogle Scholar
  3. 3.
    Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1322:1405–1411Google Scholar
  4. 4.
    Chabot RJ, John ER, Prichep LS et al (1993) Real-time multichannel quantitative EEG monitoring. In: Willner A (ed) Cerebral damage before and after cardiac surgery. Kluwer, Oordecht, pp 163–181Google Scholar
  5. 5.
    Cheng MA, Theard MA, Tempelhoff R (1997) Anesthesia for carotid endarterectomy: a survey. J Neurosurg Anesthesiol 3:211–216CrossRefGoogle Scholar
  6. 6.
    Chopp M, Zhang RL, Chen H et al (1994) Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–875, discussion 75–76PubMedGoogle Scholar
  7. 7.
    Clark RK, Lee EV, White RF et al (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 35:387–392PubMedCrossRefGoogle Scholar
  8. 8.
    Demers P, Elkouri S, Martineau R et al (2000) Outcome with high blood lactate levels during cardiopulmonary bypass in adult cardiac operation. Ann Thorac Surg 70:2082–2086PubMedCrossRefGoogle Scholar
  9. 9.
    De Sommer F (2007) What is optimal flow and how to validate this. J Extra Corpor Technol 39:278–280Google Scholar
  10. 10.
    Dewhurst AT, Moore SJ, Liban JB (2002) Pharmacological agents as cerebral protectants during deep hypothermic circulatory arrest in adult thoracic aortic surgery. A survey of current practice. Anaesthesia 57:1016–1021PubMedCrossRefGoogle Scholar
  11. 11.
    Drummond JC (2000) Monitoring depth of anesthesia. Anesthesiology 93:876–882PubMedCrossRefGoogle Scholar
  12. 12.
    Dullenkopf A, Baulig W, Weiss M et al (2007) Cerebral near-infrared spectroscopy in adult patients after cardiac surgery is not useful for monitoring absolute values but may reflect trends in venous oxygenation under clinical conditions. J Cardiothorac Vasc Anesth 21(4):535–539PubMedCrossRefGoogle Scholar
  13. 13.
    Edmonds HL, Griffiths L, Laken J van der et al (1992) Quantitative electroencephalographic monitoring during myocardial revascularization predicts postoperative disorientation and improves outcome. J Thorac Cardiovasc Surg 103:555–563PubMedGoogle Scholar
  14. 14.
    Edmonds HL (2001) Advances in neuromonitoring for cardiothoracic and vascular surgery. J Cardiothorac Vasc Anesth 15:241–250PubMedCrossRefGoogle Scholar
  15. 15.
    Edmonds HL (2004) Monitoring the nervous system during cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 2:59–60CrossRefGoogle Scholar
  16. 16.
    Ellenberger C, Diaper J, Licker M (2007) Bispectral index and detection of acute brain injury during cardiac surgery. Eur J Anaesthesiol 24:803–816CrossRefGoogle Scholar
  17. 17.
    Engelhard K, Werner C, Eberspacher E et al (2004) Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. Eur J Anaesthesiol 21:530–537PubMedGoogle Scholar
  18. 18.
    Engelhard K, Winkelheide U, Werner C et al (2007) Sevoflurane affects neurogenesis after forebrain ischemia in rats. Anesth Analg 104:898–903PubMedCrossRefGoogle Scholar
  19. 19.
    Fukuda S, Warner DS (2007) Cerebral protection. Br J Anaesth 99:10–17PubMedCrossRefGoogle Scholar
  20. 20.
    Grigore AM, Grocott HP, Mathew JP et al (2002) Rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg 94:4–10PubMedCrossRefGoogle Scholar
  21. 21.
    Grocott HP (2006) Perioperative temperature and cardiac surgery. J Extra Corpor Technol 38:77–80PubMedGoogle Scholar
  22. 22.
    Grocott HP, Yoshitani K (2007) Neuroprotection during cardiac surgery. J Anesth 21:367–377PubMedCrossRefGoogle Scholar
  23. 23.
    Grote CL, Shanahan PT, Salmon P et al (1992) Cognitive outcome after cardiac operations. J Thorac Cardiovasc Surg 5:1405–1409Google Scholar
  24. 24.
    Guarracino F (2008) Cerebral monitoring during cardiovascular surgery. Curr Opin Anaesth 21:50–54CrossRefGoogle Scholar
  25. 25.
    Guerrieri Wolf L, Choudhary BP, Abu-Omar Y et al (2008) Solid and gaseous cerebral microembolization after biologic and mechanical aortic valve replacement: investigation with multirange and multifrequency transcranial Doppler ultrasound. J Thorac Cardiovasc Surg 3:512–520Google Scholar
  26. 26.
    Gugino LD, Agilo LS, Yli-Hankala A (2004) Monitoring the electroencephalogramm during bypass procedures. Semin Cardiothorac Vasc Anesth 8:61–83PubMedCrossRefGoogle Scholar
  27. 27.
    Hans SS, Jareunpoon O (2007) Prospective evaluation of electroencephalography, carotid artery stump pressure, and neurologic changes during 314 consecutive carotid endarterectomies performed in awake patients. J Vasc Surg 3:511–515CrossRefGoogle Scholar
  28. 28.
    Head BP, Patel P (2007) Anesthetics and brain protection. Curr Opin Anaesthesiol 20:395–399PubMedCrossRefGoogle Scholar
  29. 29.
    Himmelseher S, Pfenninger E (2000) Neuroprotektion in der Neuroanästhesie. Die gegenwärtige Praxis in Deutschland. Anaesthesist 49:412–419PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffmann GM (2006) Neurologic monitoring on cardiopulmonary bypass: what are we obligate to do? Ann Thorac Surg 6:S2373–S2380CrossRefGoogle Scholar
  31. 31.
    Hogue CW, Lillie R, Hershey T (2003) Gender influence on cognitive function after cardiac operation. Ann Thorac Surg 76:1119–1125PubMedCrossRefGoogle Scholar
  32. 32.
    Iglesias I, Murkin JM, Bainbridge D et al (2003) Monitoring cerebral oxygen saturation significantly decreases postoperative length of stay: a prospective randomized blinded study. Heart Surg Forum 6:204Google Scholar
  33. 33.
    Kadoi Y (2007) Pharmacological neuroprotection during cardiac surgery. Asian Cardiovasc Thorac Ann 15:167–177PubMedGoogle Scholar
  34. 34.
    Kawaguchi M, Furuya H, Patel PM (2005) Neuroprotective effects of anesthetic agents. J Anesth 19:150–156PubMedCrossRefGoogle Scholar
  35. 35.
    Logemann F, Gras C, Mehler D et al (2001) Bilateral monitoring of cerebral saturation in aortic arch surgery. Anasthesiol Intensivmed Notfallmed Schmerzther 36:388–392PubMedCrossRefGoogle Scholar
  36. 36.
    Mackensen GB, Ti LK, Phillips-Bute BG et al (2003) Cerebral embolisation during cardiac surgery: impact of aortic atheroma burden. Br J Anaesth 91:656–661PubMedCrossRefGoogle Scholar
  37. 37.
    Mangano DT (1994) Multicenter outcome research. J Cardiothorac Vasc Anesth 8:10–12PubMedCrossRefGoogle Scholar
  38. 38.
    Maxwell WL, Watson A, Queen R et al (2005) Slow, medium, or fast re-warming following posttraumatic hypothermia therapy? An ultrastructural perspective. J Neurotrauma 22:873–884PubMedCrossRefGoogle Scholar
  39. 39.
    Mourisse J, Booij L (2003) Bispectral index detects period of cerebral hypoperfusion during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17:76–78PubMedCrossRefGoogle Scholar
  40. 40.
    Murkin JM (2001) Stroke and the elderly: aortic atheroma and CNS outcome after cardiac surgery. Cardiovasc Rev Rep 22:397–398Google Scholar
  41. 41.
    Murkin JM, Adams S, Schaefer B et al (2004) Monitoring cerebral oxygen saturation significantly decreases stroke rate in CABG patients: a randomized blinded study. Heart Surg Forum 7:515CrossRefGoogle Scholar
  42. 42.
    Murkin JM (2004) Perioperative multimodality neuromonitoring: an overview. Semin Cardiothorac Vasc Anesth 2: 167–171CrossRefGoogle Scholar
  43. 43.
    Murkin JM, Adams S, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized prospective study. Anesth Analg 104:51–58PubMedCrossRefGoogle Scholar
  44. 44.
    Nabavi DG, Stockmann J, Schmid C et al (2003) Doppler microembolic load predicts risk of thromboembolic complications in Novacor patients. J Cardiothorac Surg 126:1160–1167Google Scholar
  45. 45.
    Newman MF, Mathew JP, Grocott HP et al (2006) Central nervous system injury associated with cardiac surgery. Lancet 368:694–703PubMedCrossRefGoogle Scholar
  46. 46.
    Nussmeier NA, Arlund C, Slogoff S (1986) Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 64:165–170PubMedCrossRefGoogle Scholar
  47. 47.
    Nussmeier N (2005) Management of temperature during and after cardiac surgery. Tex Heart Inst J 32:472–476PubMedGoogle Scholar
  48. 48.
    Nussmeier NA, Cheng W, Marino M et al (2006) Temperature during cardiopulmonary bypass: the discrepancies between monitored sites. Anesth Analg 103:1373–1379PubMedCrossRefGoogle Scholar
  49. 49.
    Ranucci M, Romitti F, Isgro G et al (2005) Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 80:2213–2220PubMedCrossRefGoogle Scholar
  50. 50.
    Ranucci M, Isgro G, Romitti F et al (2006) Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters. Ann Thorac Surg 81:2189–2195PubMedCrossRefGoogle Scholar
  51. 51.
    Ranucci M, de Toffol B, Isgro G et al (2006) Hyperlactatemia during cardiopulmonary bypass: determinants and impact on postoperative outcome. Crit Care 10:R167PubMedCrossRefGoogle Scholar
  52. 52.
    Rodriguez RA (2004) Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery. Semin Cardiothorac Vasc Anesth 8:85–99PubMedCrossRefGoogle Scholar
  53. 53.
    Saidi N, Murkin JM (2005) Applied neuromonitoring in cardiac surgery: patient specific management. Semin Cardiothorac Vasc Anesth 1:17–23CrossRefGoogle Scholar
  54. 54.
    Schirmer U (2007) Hypothermie in der Herzchirurgie. Anaesthesist 56:930–935PubMedCrossRefGoogle Scholar
  55. 55.
    Stecker MM, Cheung AT, Pochettino A et al (2001) Deep hypothermic circulatory arrest: effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg 71:14–28PubMedCrossRefGoogle Scholar
  56. 56.
    Sundt TM Jr, Sharbrough FW, Piepgras DG et al (1981) Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc 56:533–543PubMedGoogle Scholar
  57. 57.
    Villacorta J, Kerbaul F, Collart F et al (2005) Perioperative cerebral ischaemia in cardiac surgery and BIS. Anaesth Intensive Care 4:514–517Google Scholar
  58. 58.
    Williams GD, Ramamoorthy C (2007) Brain monitoring and protection during pediatric cardiac surgery. Semin Cardiothorac Vasc Anesth 11:23–33PubMedCrossRefGoogle Scholar
  59. 59.
    Zaidan JR, Klochany A, Martin WM et al (1991) Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 74:406–411PubMedCrossRefGoogle Scholar
  60. 60.
    Yao FS, Cheng CC, Ho CY et al (2004) Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 5:552–558CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.InselspitalUniversitätsklinik für Anästhesiologie und SchmerztherapieBernSchweiz
  2. 2.Klinik für AnästhesiologieUniversitätsmedizin der Johannes-Gutenberg-Universität MainzMainzDeutschland
  3. 3.Abteilung KardioanästhesiologieUniversitätsklinikum UlmUlmDeutschland
  4. 4.Abteilung für Anästhesie und Intensivmedizin II, HerzzentrumUniversität LeipzigLeipzigDeutschland

Personalised recommendations