Der Anaesthesist

, 58:156 | Cite as

Entwicklung eines Weichteilulkus nach periduraler Langzeitinfusion

Kasuistiken

Zusammenfassung

Lokalanästhetika (LA), in klinischen Konzentrationen verabreicht, beinhalten ein gewebstoxisches Potenzial, dessen Auswirkungen in der Praxis jedoch selten beobachtet werden. Es wird über den Fall einer 74-jährigen Patientin (Body-Mass-Index 16,8 kg/m2) mit einem metastasierenden Bronchuskarzinom berichtet. Sie hatte wegen therapierefraktärer Schmerzen einen getunnelten thorakalen Periduralkatheter (PDK) erhalten. Unter einer kontinuierlichen periduralen Infusion von 0,49%igem Bupivacain, 0,0036%igem Morphium und 0,0001%igem Clonidin (3 ml/h) entwickelte sich nach 8 Wochen thorakal-paravertebral ein derbes Weichteilulkus mit kristallinem Fremdmaterial (KFM) im Ulkusgrund. Die thorakale Computertomographie (CT) bestätigte eine Dislokation des PDK in die Subkutis mit einer ausgedehnten Flüssigkeitsansammlung bis zum M. erector spinae. Die histologische Untersuchung zeigte eine areaktive Nekrose mit Einschlüssen von KFM; die chemische Analyse des KFM erbrachte den Nachweis von Bupivacain, Morphium und Natriumchlorid. Das Weichteilulkus war wahrscheinlich durch Ausfällungen des LA-Gemisches entstanden.

Schlüsselwörter

Periduralkatheter Lokalanästhetikum Bupivacain Komplikationen Weichteilulkus 

Development of a soft tissue ulcer after long-term peridural infusion

Abstract

Local anaesthetic agents (LA) in clinical concentrations have the potential for tissue toxicity, although this is rarely observed in clinical practice. The case of a 74-year-old female patient (BMI 16.8 kg/m2) with a metastasising bronchial carcinoma is reported, who suffered from severe back pain due to tumour infiltration. For pain management a tunnelled continuous thoracic peridural catheter (PC) was placed and a mixture of bupivacaine 0.49%, morphine 0.0036% and clonidine 0.0001% was infused at 3 ml/h. After 8 weeks of continuous infusion an ulcer developed in the soft tissue close to the thoracic spine containing whitish crystalline material (CM). A computed tomography examination revealed a subcutaneously displaced PC with extensive fluid collection reaching down to the sacrospinalis muscle. Histologically an unreactive necrosis with enclosed CM of unknown etiology was found. The result of the chemical analysis of the deposits demonstrated bupivacaine, morphine and sodium chloride. It is concluded that the soft tissue ulcer was probably caused by precipitation of the LA mixture.

Keywords

Peridural catheter Local anaesthetic agent Bupivacaine Complications Soft tissue ulcer 

Literatur

  1. 1.
    Benoit PW, Belt WD (1970) Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (marcaine). J Anat 107: 547–556PubMedGoogle Scholar
  2. 2.
    Benoit PW (1978) Microscarring in skeletal muscle after repeated exposures to lidocaine with epinephrine. J Oral Surg 36: 530–533PubMedGoogle Scholar
  3. 3.
    Carlson BM, Emerick S, Komorowski TE et al. (1992) Extraocular muscle regeneration in primates. Local anesthetic-induced lesions. Ophthalmology 99: 582–589PubMedGoogle Scholar
  4. 4.
    Carlson BM, Rainin EA (1985) Rat extraocular muscle regeneration. Repair of local anesthetic-induced damage. Arch Ophthalmol 103: 1373–1377PubMedGoogle Scholar
  5. 5.
    Carlson BM, Shepard B, Komorowski TE (1990) A histological study of local anesthetic-induced muscle degeneration and regeneration in the monkey. Orthop Res 8: 485–494CrossRefGoogle Scholar
  6. 6.
    Classen AM, Wimbish GH, Kupiec TC (2004) Stability of admixture containing morphine sulphate, bupivacaine hydrochloride, and clonidine hydrochloride in an implantable infusion system. J Pain Symptom Manage 28(6): 603–611PubMedCrossRefGoogle Scholar
  7. 7.
    Foster AH, Carlson BM (1980) Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth Analg 59: 727–736PubMedCrossRefGoogle Scholar
  8. 8.
    Gerheuser F, Roth A (2007) Periduralanästhesie. Anaesthesist 56: 499–526PubMedCrossRefGoogle Scholar
  9. 9.
    Hall-Craggs EC (1980) Early ultrastructural changes in skeletal muscle exposed to the local anaesthetic bupivacaine (Marcaine). Br J Exp Pathol 61: 139–149PubMedGoogle Scholar
  10. 10.
    Hogan Q, Dotson R, Erickson S et al. (1994) Local anesthetic myotoxicity: a case and review. Anesthesiology 80: 942–947, Rev 71: 849–908Google Scholar
  11. 11.
    Irwin W, Fontaine E, Agnolucci L et al. (2002) Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem 277: 12221–12227PubMedCrossRefGoogle Scholar
  12. 12.
    Komai H, Lokuta AJ (1999) Interaction of bupivacaine and tetracaine with the sarcoplasmic reticulum Ca2+ release channel of skeletal and cardiac muscles. Anesthesiology 90: 835–843PubMedCrossRefGoogle Scholar
  13. 13.
    Komorowski TE, Shepard B, Okland S et al. (1990) An electron microscopic study of local anesthetic-induced skeletal muscle fiber degeneration and regeneration in the monkey. J Orthop Res 8: 495–503PubMedCrossRefGoogle Scholar
  14. 14.
    Kyttä J, Heinonen E, Rosenberg PH et al. (1986) Effects of repeated bupivacaine administration on sciatic nerve and surrounding muscle tissue in rats. Acta Anaesthesiol Scand 30: 625–629PubMedCrossRefGoogle Scholar
  15. 15.
    Lerch N, Gerber H, Oehen HP, Schorno HX (1998) Bupivacaine free base deposits in peridural space after prolonged application for chronic cancer pain. Abstract Nr. 66, Proceedings XVII. Annual ESRA Congress, GenevaGoogle Scholar
  16. 16.
    Nonaka I, Takagi A, Ishiura S et al. (1983) Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (marcaine). Acta Neuropathol 60: 167–174PubMedCrossRefGoogle Scholar
  17. 17.
    Nouette-Gaulain K, Sirvent P, Canal-Raffin M et al. (2007) Effects of intermittent femoral nerve injections of bupivacaine, levobupivacaine, and ropivacaine on mitochondrial energy metabolism and intracellular calcium homeostasis in rat psoas muscle. Anesthesiology 106(5): 1026–1034PubMedCrossRefGoogle Scholar
  18. 18.
    Parris WC, Dettbarn WD (1988) Muscle atrophy following nerve block therapy. Anesthesiology 69: 289PubMedCrossRefGoogle Scholar
  19. 19.
    Schipper I, Lüthi M (1994) A case of diplopia after retrobulbar anesthesia for cataract operation. Klin Monatsbl Augenheilkd 204: 176–180PubMedCrossRefGoogle Scholar
  20. 20.
    Schultz E, Lipton BH (1978) The effect of marcaine on muscle and non-muscle cells in vitro. Anat Rec 191: 351–369PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor G, Devys JM, Heran F, Plaud B (2004) Early exploration of diplopia with magnetic resonance imaging after peribulbar anaesthesia. Br J Anaesth 92: 899–901PubMedCrossRefGoogle Scholar
  22. 22.
    Wakata N, Sugimoto H, Iguchi H (2001) Bupivacaine hydrochloride induces muscle fiber necrosis and hydroxyl radical formation – dimethyl sulphoxide reduces hydroxyl radical formation. Neurochem Res 26: 841–844PubMedCrossRefGoogle Scholar
  23. 23.
    Weissauer W., Biermann E, Justitiare des Berufsverbandes Deutscher Anästhesisten, Nürnberg (1998) Therapiefreiheit und Arzneimittelzulassung, Stellungnahme zur Erwiderung von J Jage. Anaesthesist 47: 605–609CrossRefGoogle Scholar
  24. 24.
    Wulf H, Gleim M, Mignat C (1994) The stability of mixtures of morphine hydrochloride, bupivacaine hydrochloride, and clonidine hydrochloride in portable pump reservoirs for the management of chronic pain syndromes. J Pain Symptom Manage 9(5): 308–311PubMedCrossRefGoogle Scholar
  25. 25.
    Yagiela JA, Benoit PW, Buoncristiani RD et al. (1981) Comparison of myotoxic effects of lidocaine with perinephrine in rats and humans. Anesth Analg 60: 471–480PubMedCrossRefGoogle Scholar
  26. 26.
    Zink W, Bohl JRE, Hacke N et al. (2005) The long-term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg 101: 548–554PubMedCrossRefGoogle Scholar
  27. 27.
    Zink W, Graf BM (2003) Toxikologie der Lokalanästhetika. Anaesthesist 52: 1102–1123PubMedCrossRefGoogle Scholar
  28. 28.
    Zink W, Graf BM (2004) Local anesthetic myotoxicity. Reg Anesth Pain Med 29: 333–340PubMedGoogle Scholar
  29. 29.
    Zink W, Graf BM, Sinner B et al. (2002) Differential effects of bupivacaine on intracellular Ca2+ regulation: potential mechanisms of its myotoxicity. Anesthesiology 97: 710–716PubMedCrossRefGoogle Scholar
  30. 30.
    Zink W, Kunst G, Martin E et al. (2002) Differential effects of S(-)-ropivacaine and bupivacaine on intracellular Ca2+ homeostasis in mammalian skeletal muscle fibers. Anesthesiology 96: A972Google Scholar
  31. 31.
    Zink W, Missler G, Sinner B et al. (2005) Differential effects of bupivacaine and ropivacaine enantiomers on intracellular Ca2+ regulation in murine skeletal muscle fibers. Anesthesiology 102: 793–798PubMedCrossRefGoogle Scholar
  32. 32.
    Zink W, Seif C, Bohl JRE et al. (2002) Bupivacaine but not ropivacaine induces apoptosis in mammalian skeletal muscle fibers. Anesthesiology 96: A971CrossRefGoogle Scholar
  33. 33.
    Zink W, Seif C, Bohl JRE et al. (2002) The acute myotoxic effects of bupivacain and ropivacaine after continuous peripheral nerve blockades. Anesth Analg 97: 1173–1179Google Scholar
  34. 34.
    Zink W, Sinner B, Zausig Y,·Graf BM (2007) Myotoxizität von Lokalanästhetika. Anaesthesist 56: 118–127PubMedCrossRefGoogle Scholar
  35. 35.
    Matthias Hofer (2006) CT-Kursbuch. Ein Arbeitsbuch für den Einstieg in die Computertomographie, 5. Aufl. DIDAMED, Düsseldorf, S 16Google Scholar
  36. 36.
    Bundesinstitut für Arzneimittel und Medizinprodukte (www.bfarm.de)Google Scholar
  37. 37.
    Arzneimittel-Kompendium der Schweiz unter Bupivacain Bioren und Bupivacain SinteticaGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Institut für Anästhesie, Chirurgische Intensivmedizin, Rettungsmedizin und SchmerztherapieLuzerner KantonsspitalLuzern 16Schweiz
  2. 2.Pathologisches InstitutLuzerner KantonsspitalLuzernSchweiz

Personalised recommendations