Advertisement

Der Anaesthesist

, 58:66 | Cite as

Sugammadex

Neues pharmakologisches Konzept zur Antagonisierung von Rocuronium und Vecuronium
  • H.J. SparrEmail author
  • L.H. Booij
  • T. Fuchs-Buder
Klinische Pharmakologie

Zusammenfassung

Bisher standen lediglich Acetylcholinesterasehemmer wie z. B. Neostigmin zur Antagonisierung neuromuskulärer Restblockaden zur Verfügung. Mit dem modifizierten γ-Zyklodextrin Sugammadex gibt es zumindest für aminosteroidale Muskelrelaxanzien zukünftig eine Alternative. Es handelt sich bei dieser Substanz um eine ringförmige Zuckerverbindung, die eine stabile Einschlussverbindung mit aminosteroidalen Muskelrelaxanzien, insbesondere Rocuronium und Vecuronium, bildet. Dieser Wirkmechanismus unterscheidet sich somit grundsätzlich von dem der Acetylcholinesterasehemmer. Die nachfolgende Übersichtsarbeit fasst die bisherigen Untersuchungen im Rahmen des Zulassungsverfahrens zusammen. Insbesondere wird auf die Wirksamkeit, Nebenwirkungen und neue anästhesiologische Konzepte, die durch Sugammadex möglich sind, eingegangen.

Schlüsselwörter

Neuromuskuläre Restblockade Antagonisierung Wirksamkeit Nebenwirkungen Anästhesiologische Konzepte 

Sugammadex

New pharmacological concept for antagonizing rocuronium and vecuronium

Abstract

Up to now only acetylcholine esterase inhibitors, such as neostigmine, were available as antagonists of residual neuromuscular blocks. Sugammadex is a modified γ-cyclodextrin that binds rocuronium and chemically similar aminosteroidal muscle relaxants, such as vecuronium. The underlying mechanism of action is new and differs completely from that of acetylcholine esterase inhibitors. This review summarizes data published so far within the framework of the licensing procedure about the efficacy, safety and side-effects of sugammadex and presents potential new anesthesiological concepts using this compound.

Keywords

Residual neuromuscular block Antagonization Effectivity Side-effects Anesthesiological concepts 

Notes

Interessenkonflikt

Doz. Sparr und Prof. Booij waren als Prüfärzte bei einigen der beschriebenen Zulassungsstudien von Sugammadex involviert. Doz. Sparr und Prof. Fuchs-Buder erhielten in der Vergangenheit Vortragshonorare von der Fa. Organon. Die Autoren versichern, dass die Präsentation des Themas unabhängig und die Darstellung der Inhalte neutral ist.

Literatur

  1. 1.
    Alvarez-Gomez JA, Wattwil M, Vanacker B et al. (2007) Reversal of vecuronium-induced shallow neuromuscular blockade is significantly faster with sugammadex compared with neostigmine. Eur J Anaesthesiol 24: 124–125Google Scholar
  2. 2.
    Amao R, Zornow MH, McTaggart-Cowan R et al. (2007) Sugammadex safely reverses rocuronium-induced blockade in patients with pulmonary disease. Anesthesiology 107: A1582Google Scholar
  3. 3.
    Arain SR, Kern S, Ficke DJ, Ebert TJ (2005) Variability of duration of action of neuromuscular-blocking drugs in elderly patients. Acta Anaesthesiol Scand 49: 312–315PubMedCrossRefGoogle Scholar
  4. 4.
    Baillard C, Clec’h C, Catineau J et al. (2005) Postoperative residual neuromuscular block: a survey of management. Br J Anaesth 95: 622–626PubMedCrossRefGoogle Scholar
  5. 5.
    Blobner M, Eriksson L, Scholz J et al. (2007) Sugammadex (2 mg/kg) significantly faster reverses shallow rocuronium-induced neuromuscular block compared with neostigmine (50 μg/kg). Eur J Anaesthesiol 24: 124Google Scholar
  6. 6.
    Boer HD de, Egmond J van, Pol F van de et al. (2006) Chemical encapsulation of rocuronium by synthetic cyclodextrin derivatives: reversal of neuromuscular block in anaesthetized rhesus monkeys. Br J Anaesth 96: 201–206PubMedCrossRefGoogle Scholar
  7. 7.
    Boer HD de, Egmond J van, Pol F van de et al. (2006) Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys. Anesthesiology 104: 718–723PubMedCrossRefGoogle Scholar
  8. 8.
    Boer HD de, Egmond J van, Pol F van de et al. (2006) Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anaesthetized rhesus monkey. Br J Anaesth 96: 473–479PubMedCrossRefGoogle Scholar
  9. 9.
    Boer HD de, Egmond J van, Pol F van de et al. (2006) Time course of action of sugammadex (Org 25969) on rocuronium-induced block in the rhesus monkey, using a simple model of equilibration of complex formation. Br J Anaesth 97: 681–686PubMedCrossRefGoogle Scholar
  10. 10.
    Boer HD de, Driessen JJ, Marcus MA et al. (2007) Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study. Anesthesiology 107: 239–244PubMedCrossRefGoogle Scholar
  11. 11.
    Boer HD de, Driessen JJ, van Egmond J, Booij LH (2008) Non-steroidal neuromuscular blocking agents to re-establish paralysis after reversal of rocuronium-induced neuromuscular block with sugammadex. Can J Anaesth 55: 124–125PubMedGoogle Scholar
  12. 12.
    Bom A, Bradley M, Cameron K et al. (2002) A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem 114: 276–280CrossRefGoogle Scholar
  13. 13.
    Broek L van den, Proost JH, Wierda JM (1994) Early and late reversibility of rocuronium bromide. Eur J Anaesthesiol Suppl 9: 128–132PubMedGoogle Scholar
  14. 14.
    Capron F, Alla F, Hottier C et al. (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 100: 1119–1124PubMedCrossRefGoogle Scholar
  15. 15.
    Dahl V, Pendeville PE, Hollman MW et al. (2007) Reversal of rocuronium-induced neuromuscular blockade by sugammadex in cardiac patients. Anesthesiology 107: A1581Google Scholar
  16. 16.
    Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3: 1023–1035PubMedCrossRefGoogle Scholar
  17. 17.
    Kam PJ de, Kuijk J van, Smeets JM et al. (2007) Single IV sugammadex doses up to 32 mg/kg are not associated with QT/QTc prolongation. Anesthesiology 107: A1580Google Scholar
  18. 18.
    Decoopman M, Cammu G, Suy K et al. (2007) Reversal of pancuronium-induced block by the selective relaxant binding agent sugammadex. Eur J Anaesthesiol 24: 110Google Scholar
  19. 19.
    Donati F (2007) Sugammadex: an opportunity for more thinking or more cookbook medicine? Can J Anaesth 54: 689–695PubMedGoogle Scholar
  20. 20.
    Duvaldestin P, Kuizenga K, Kjaer CC et al. (2007) Sugammadex achieves fast recovery from profound neuromuscular blockade induced by rocuronium or vecuronium: a dose-response study. Eur J Anaesthesiol 24: 123Google Scholar
  21. 21.
    Eikermann M, Groeben H, Husing J, Peters J (2004) Predictive value of mechanomyography and accelerometry for pulmonary function in partially paralyzed volunteers. Acta Anaesthesiol Scand 48: 365–370PubMedCrossRefGoogle Scholar
  22. 22.
    Eikermann M, Zaremba S, Malhotra A et al. (2008) Neostigmine but not sugammadex impairs upper airway dilator muscle activity and breathing. Br J Anaesth 101: 344–349PubMedCrossRefGoogle Scholar
  23. 23.
    Eleveld DJ, Kuizenga K, Proost JH, Wierda JM (2007) A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg 104: 582–584PubMedCrossRefGoogle Scholar
  24. 24.
    Epemolu O, Bom A, Hope F, Mason R (2003) Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology 99: 632–637, discussion 636APubMedCrossRefGoogle Scholar
  25. 25.
    Epemolu O, Mayer I, Hope F et al. (2002) Liquid chromatography/mass spectrometric bioanalysis of a modified gamma-cyclodextrin (Org 25969) and rocuronium bromide (Org 9426) in guinea pig plasma and urine: its application to determine the plasma pharmacokinetics of Org 25969. Rapid Commun Mass Spectrom 16: 1946–1952PubMedCrossRefGoogle Scholar
  26. 26.
    Fink H, Geldner G, Fuchs-Buder T et al. (2006) Muskelrelaxanzien in Deutschland 2005: Ein Vergleich zwischen den Anwendungsgewohnheiten in Krankenhäusern und Praxen. Anaesthesist 55: 668–678PubMedCrossRefGoogle Scholar
  27. 27.
    Flockton E, Scanni E, Gomar C et al. (2007) Sugammadex after rocuronium provides faster recovery from neuromuscular blockade than neostigmine after cisatracurium. Eur J Anaesthesiol 24: 123Google Scholar
  28. 28.
    Fuchs-Buder T, Claudius C, Skovgaard LT et al. (2007) Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand 51: 789–808PubMedCrossRefGoogle Scholar
  29. 29.
    Fuchs-Buder T, Eikermann M (2006) Neuromuskuläre Restblockaden. Klinische Konsequenzen, Häufigkeit und Vermeidungsstrategien. Anaesthesist 55: 7–16PubMedCrossRefGoogle Scholar
  30. 30.
    Gijsenbergh F, Ramael S, Houwing N, Iersel T van (2005) First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 103: 695–703PubMedCrossRefGoogle Scholar
  31. 31.
    Gordon M, Rex C, Ingimarsson J, Klarin B, Smeets J (2007) Pharamacokinetics of the selective relaxant binding agent sugammadex, administered for reversal of shalloow neuromuscular blockade induced by rocuronium or vecuronium. Eur J Anaesthesiol 24: 112Google Scholar
  32. 32.
    Groudine SB, Soto R, Lien C et al. (2007) A randomized, dose-finding, phase II study of the selective relaxant binding drug, sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth Analg 104: 555–562PubMedCrossRefGoogle Scholar
  33. 33.
    Jones KR, Caldwell JE, Brull SJ, Soto R (2007) Faster reversal of profound rocuronium-induced neuromuscular blockade with sugammadex vs neostigmine. Anesthesiology 107: A1577Google Scholar
  34. 34.
    Kopman AF (2007) Sugammadex-rocuronium dosing. Anesth Analg 105: 883–884; author reply 884PubMedCrossRefGoogle Scholar
  35. 35.
    Kopman AF (2006) Sugammadex: a revolutionary approach to neuromuscular antagonism. Anesthesiology 104: 631–633PubMedCrossRefGoogle Scholar
  36. 36.
    Kopman AF, Chin W, Cyriac J (2005) Acceleromyography vs. electromyography: an ipsilateral comparison of the indirectly evoked neuromuscular response to train-of-four stimulation. Acta Anaesthesiol Scand 49: 316–322PubMedCrossRefGoogle Scholar
  37. 37.
    Kopman AF, Zhaku B, Lai KS (2003) The „intubating dose“ of succinylcholine: the effect of decreasing doses on recovery time. Anesthesiology 99: 1050–1054PubMedCrossRefGoogle Scholar
  38. 38.
    Lee C, Jahr JS, Candiotti K et al. (2007) Reversal of profound rocuronium NMB with sugammadex is faster than recovery from succinylcholine. Anesthesiology 107: A988CrossRefGoogle Scholar
  39. 39.
    Lemmens HJM, El-Orbany MI, Berry J, Martin G (2007) Sugammadex reverses profound vecuronium blockade more rapidly than neostigmine. Anesthesiology 107: A158Google Scholar
  40. 40.
    Lysakowski C, Suppan L, Czarnetzki C et al. (2007) Impact of the intubation model on the efficacy of rocuronium during rapid sequence intubation: systematic review of randomized trials. Acta Anaesthesiol Scand 51: 848–857PubMedCrossRefGoogle Scholar
  41. 41.
    Maybauer DM, Geldner G, Blobner M et al. (2007) Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia 62: 12–17PubMedCrossRefGoogle Scholar
  42. 42.
    McDonagh DL, Benedict PE, Kovac AL et al. (2007) Efficacy and safety of sugammadex for reversal of rocuronium-induced blockade in elderly patients. Anesthesiology 107: A1583Google Scholar
  43. 43.
    Miller RD (2007) Sugammadex: an opportunity to change the practice of anesthesiology? Anesth Analg 104: 477–478PubMedCrossRefGoogle Scholar
  44. 44.
    Molina AL, Boer HD de, Klimek M et al. (2007) Reversal of rocuronium-induced (1.2 mg kg−1) profound neuromuscular block by accidental high dose of sugammadex (40 mg kg−1). Br J Anaesth 98: 624–627PubMedCrossRefGoogle Scholar
  45. 45.
    Naguib M (2007) Sugammadex: another milestone in clinical neuromuscular pharmacology. Anesth Analg 104: 575–581PubMedCrossRefGoogle Scholar
  46. 46.
    Nigrovic V, Bhatt SB, Amann A (2007) Simulation of the reversal of neuromuscular block by sequestration of the free molecules of the muscle relaxant. J Pharmacokinet Pharmacodyn 34: 771–788PubMedCrossRefGoogle Scholar
  47. 47.
    Paton WD, Waud DR (1967) The margin of safety of neuromuscular transmission. J Physiol 191: 59–90PubMedGoogle Scholar
  48. 48.
    Plaud B, Meretoja O, Pohl B et al. (2007) Reversal of rocuronium-induced neuromuscular blockade in paediatric and adult patients. Eur J Anaesthesiol 24: 124Google Scholar
  49. 49.
    Plaud B, Heumen E van, Zwiers A (2008) Sugammadex is well tolerated for the reversal of rocuronium- or vecuronium-induced neuromuscular blockade in a pooled analysis of adverse events in 10 placebo-controlled trials. Eur J Anaesthesiol 25: 9AP3–3Google Scholar
  50. 50.
    Proost JH, Eriksson LI, Mirakhur RK et al. (2000) Urinary, biliary and faecal excretion of rocuronium in humans. Br J Anaesth 85: 717–723PubMedCrossRefGoogle Scholar
  51. 51.
    Pühringer FK, Blaszyk M, Cammu G et al. (2007) Sugammadex achieves fast recovery from shallow neuromuscular blockade induced by rocuronium or vecuronium: dose-response studies. Eur J Anaesthesiol 24: 111CrossRefGoogle Scholar
  52. 52.
    Puhringer FK, Heier T, Dodgson M et al. (2002) Double-blind comparison of the variability in spontaneous recovery of cisatracurium- and vecuronium-induced neuromuscular block in adult and elderly patients. Acta Anaesthesiol Scand 46: 364–371PubMedCrossRefGoogle Scholar
  53. 53.
    Puhringer FK, Rex C, Sielenkamper AW et al. (2008) Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 109: 188–197PubMedGoogle Scholar
  54. 54.
    Roy JJ, Donati F, Boismenu D, Varin F (2002) Concentration-effect relation of succinylcholine chloride during propofol anesthesia. Anesthesiology 97: 1082–1092PubMedCrossRefGoogle Scholar
  55. 55.
    Sacan O, White PF, Tufanogullari B, Klein K (2007) Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg 104: 569–574PubMedCrossRefGoogle Scholar
  56. 56.
    Shields M, Giovannelli M, Mirakhur RK et al. (2006) Org 25969 (sugammadex), a selective relaxant binding agent for antagonism of prolonged rocuronium-induced neuromuscular block. Br J Anaesth 96: 36–43PubMedCrossRefGoogle Scholar
  57. 57.
    Sorgenfrei IF, Norrild K, Larsen PB et al. (2006) Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology 104: 667–674PubMedCrossRefGoogle Scholar
  58. 58.
    Sparr HJ (2002) Cyclodextrine. Ein neues Konzept zur Antagonisierung von Muskelrelaxanzien. Anaesthesist 51: 929–930PubMedCrossRefGoogle Scholar
  59. 59.
    Sparr HJ, Vermeyen KM, Beaufort AM et al. (2007) Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety and pharmacokinetics. Anesthesiology 106: 935–943PubMedCrossRefGoogle Scholar
  60. 60.
    Staals LM, Snoeck MM, Driessen JJ et al. (2008) Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth (in press)Google Scholar
  61. 61.
    Suy K, Morias K, Cammu G et al. (2007) Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology 106: 283–288PubMedCrossRefGoogle Scholar
  62. 62.
    U.S. Food and Drug Administration (2008) Sugammadex – New Drug Application (NDA) 22–225: Industry presentation of Organon USA Inc. at the meeting of Anesthetic and Life Support Drugs Advisory Committee (ALSDAC) of the Food and Food Drug Administration (FDA), March 11 2008. http://www.fda.gov/ohrms/dockets/ac/08/slides/2008–4346s1–01-Schering-Plough-corebackup.pdfGoogle Scholar
  63. 63.
    U.S. Food and Drug Administration (2008) Sugammadex – New Drug Application (NDA) 22–225: FDA presentation at the meeting of Anesthetic and Life Support Drugs Advisory Committee (ALSDAC) of the Food and Food Drug Administration (FDA), March 11 2008. http://www.fda.gov/ohrms/dockets/ac/08/slides/2008-4346s1-02-FDA-corepresentation.ppt#289,1,SUGAMMADEX (SDX) Preliminary Efficacy FindingsGoogle Scholar
  64. 64.
    Vanacker BF, Vermeyen KM, Struys MM et al. (2007) Reversal of rocuronium-induced neuromuscular block with the novel drug sugammadex is equally effective under maintenance anesthesia with propofol or sevoflurane. Anesth Analg 104: 563–568PubMedCrossRefGoogle Scholar
  65. 65.
    Viby-Mogensen J, Engbaek J, Eriksson LI et al. (1996) Good clinical research practice (GCRP) in pharmacodynamic studies of neuromuscular blocking agents. Acta Anaesthesiol Scand 40: 59–74PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Abteilung für Anästhesie und IntensivmedizinKrankenhaus DornbirnDornbirnÖsterreich
  2. 2.Abteilung für AnästhesiologieRadbound Universität NijmegenNijmegenNiederlande
  3. 3.Département d’Anesthésie-RéanimationUniversitätsklinik Nancy/BraboisNancyFrance

Personalised recommendations