Der Anaesthesist

, 57:825

Ventilatorassoziierte Pneumonie

CME Weiterbildung • Zertifizierte Fortbildung

Zusammenfassung

Die ventilatorassoziierte Pneumonie (VAP) ist die häufigste nosokomiale Infektion in der Intensivmedizin und stellt einen unabhängigen Risikofaktor für die Letalität von Intensivpatienten dar. Für ihre Genese sind die durch die maschinelle Beatmung selbst hervorgerufenen mechanischen Schäden des Lungengewebes von geringerer Bedeutung, entscheidender ist demgegenüber die Art der Applikation der Beatmung. So bildet der Endotrachealtubus bei invasiver Beatmung eine Leitschiene für potenziell infektiöses Sekret aus dem Oropharynx, während die Atemwege im Rahmen der nicht-invasiven Beatmung besser vor dieser Mikroaspiration geschützt sind. Zur Prophylaxe der VAP sind deshalb prinzipiell alle Maßnahmen geeignet, die solche Mikroaspirationen verhindern oder die invasive Beatmungsdauer selbst verkürzen. Auch Vorkehrungen zur Keimreduktion im Oropharynx sind so möglicherweise hilfreich. Die Effektivität der Behandlung ist u. a. von einem möglichst frühen Therapiebeginn und damit einer schnellen Diagnose abhängig. In dieser Hinsicht ist die Kombination klinischer, radiologischer und mikrobiologischer Parameter sinnvoll. Bei den therapeutischen Überlegungen steht v. a. die rasche Antibiotikatherapie unter Berücksichtigung individueller Risikofaktoren und lokaler Resistenzen im Vordergrund.

Schlüsselwörter

Maschinelle Beatmung Nosokomiale Pneumonie Intubation Nicht-invasive Beatmung Antibiotika 

Ventilator-associated pneumonia

Abstract

Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in critical care medicine and has been shown to be an independent risk factor for mortality. However, ventilator induced lung injury itself is probably only a minor factor predisposing to VAP. In contrast, invasive ventilation using an endotracheal tube is obviously a more important measure. Thus, microaspiration of potentially infectious secretion from the oropharynx into the trachea along the tube has been suggested to be the most critical pathophysiological event in the process of VAP development. Accordingly, non-invasive ventilation provides a decreased risk of VAP. Therefore, all measures aimed at averting microaspiration or shorten the duration of mechanical ventilation are appropriate to prevent VAP. Moreover, oropharyngeal decontamination may be helpful by reducing bacterial colonisation. Effectiveness of therapy depends on early treatment and therefore requires early diagnosis. With this aim combined clinical, radiologic, and microbiological parameters should be taken into account. Adequate antimicrobial therapy in due consideration for individual risk factors and local antibiotic resistance is the most important therapeutic measure.

Keywords

Mechanical Ventilation Nosocomial Pneumonia Intubation Non-invasive ventilation Antibiotics 

Literatur

  1. 1.
    Adair CG, Gorman SP, Feron BM et al. (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25: 1072–1076PubMedCrossRefGoogle Scholar
  2. 2.
    American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171: 388–416CrossRefGoogle Scholar
  3. 3.
    Andrews CP, Coalson JJ, Smith JD, Johanson WG (1981) Diagnosis of nosocomial bacterial pneumonia in acute, diffuse lung injury. Chest 80: 254–258PubMedCrossRefGoogle Scholar
  4. 4.
    Bassi GL, Zanella A, Cressoni M et al. (2008) Following tracheal intubation, mucus flow is reversed in the semirecumbent position: possible role in the pathogenesis of ventilator-associated pneumonia. Crit Care Med 36: 518–525PubMedGoogle Scholar
  5. 5.
    Bein T (2008) Lagerungstherapie zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. S2e-Leitlinie der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Anaesth Intensivmed 2: s1–s24Google Scholar
  6. 6.
    Bliziotis IA, Samonis G, Vardakas KZ et al. (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized controlled trials. Clin Infect Dis 41: 149–158PubMedCrossRefGoogle Scholar
  7. 7.
    Burns KE, Adhikari NK, Meade MO (2006) A meta-analysis of noninvasive weaning to facilitate liberation from mechanical ventilation. Can J Anaesth 53: 305–315PubMedCrossRefGoogle Scholar
  8. 8.
    Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355: 2619–2630CrossRefGoogle Scholar
  9. 9.
    Centers for Disease Control and Prevention. http://www.cdc.gov
  10. 10.
    Conrad SA, Gabrielli A, Margolis B et al. (2005) Randomized, double-blind comparison of immediate-release omeprazole oral suspension versus intravenous cimetidine for the prevention of upper gastrointestinal bleeding in critically ill patients. Crit Care Med 33: 760–765PubMedCrossRefGoogle Scholar
  11. 11.
    Cook DJ, Walter SD, Cook RJ et al. (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 129: 433–440PubMedGoogle Scholar
  12. 12.
    Cross AS, Roup B (1981) Role of respiratory assistance devices in endemic nosocomial pneumonia. Am J Med 70: 681–685PubMedCrossRefGoogle Scholar
  13. 13.
    de Jonge E, Schultz MJ, Spanjaard L et al. (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 362: 1011–1016CrossRefGoogle Scholar
  14. 14.
    Fabregas N, Torres A, El-Ebiary M et al. (1996) Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 84: 760–771PubMedCrossRefGoogle Scholar
  15. 15.
    Fagon JY, Chastre J, Wolff M et al. (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 132: 621–630PubMedGoogle Scholar
  16. 16.
    Fujitani S, Yu VL (2006) Diagnosis of ventilator-associated pneumonia: focus on nonbronchoscopic techniques (nonbronchoscopic bronchoalveolar lavage, including mini-BAL, blinded protected specimen brush, and blinded bronchial sampling) and endotracheal aspirates. J Intensive Care Med 21: 17–21PubMedCrossRefGoogle Scholar
  17. 17.
    Giantsou E, Liratzopoulos N, Efraimidou E et al. (2005) Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med 31: 1488–1494PubMedCrossRefGoogle Scholar
  18. 18.
    Gibot S, Cravoisy A, Levy B et al. (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350: 451–458PubMedCrossRefGoogle Scholar
  19. 19.
    Girou E, Schortgen F, Delclaux C et al. (2000) Association of noninvasive ventilation with nosocomial infections and survival in critically ill patients. JAMA 284: 2361–2367PubMedCrossRefGoogle Scholar
  20. 20.
    Ibrahim EH, Mehringer L, Prentice D et al. (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. J Parenter Enteral Nutr 26: 174–181CrossRefGoogle Scholar
  21. 21.
    Ibrahim EH, Tracy L, Hill C et al. (2001) The occurrence of ventilator-associated pneumonia in a community hospital: risk factors and clinical outcomes. Chest 120: 555–561PubMedCrossRefGoogle Scholar
  22. 22.
    Ibrahim EH, Ward S, Sherman G, Kollef MH (2000) A comparative analysis of patients with early-onset vs late-onset nosocomial pneumonia in the ICU setting. Chest 117: 1434–1442PubMedCrossRefGoogle Scholar
  23. 23.
    Iregui M, Ward S, Sherman G et al. (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122: 262–268PubMedCrossRefGoogle Scholar
  24. 24.
    Koeman M, van d V, Hak E et al. (2006) Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. Am J Respir Crit Care Med 173: 1348–1355PubMedCrossRefGoogle Scholar
  25. 25.
    Kollef MH, Skubas NJ, Sundt TM (1999) A randomized clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest 116: 1339–1346PubMedCrossRefGoogle Scholar
  26. 26.
    Lorente L, Lecuona M, Jimenez A et al. (2007) Influence of an endotracheal tube with polyurethane cuff and subglottic drainage on pneumonia. Am J Respir Crit Care MedGoogle Scholar
  27. 27.
    MacIntyre NR (2005) Ventilator-associated pneumonia: the role of ventilator management strategies. Respir Care 50: 766–772PubMedGoogle Scholar
  28. 28.
    Muscedere J, Dodek P, Keenan S et al. (2008) Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: prevention. J Crit Care 23: 126–137PubMedCrossRefGoogle Scholar
  29. 29.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen. http://www.nrz-hygiene.de
  30. 30.
    Paul M, uri-Silbiger I, Soares-Weiser K, Leibovici L (2004) Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328: 668PubMedCrossRefGoogle Scholar
  31. 31.
    Resar R, Pronovost P, Haraden C et al. (2005) Using a bundle approach to improve ventilator care processes and reduce ventilator-associated pneumonia. Jt Comm J Qual Patient Saf 31: 243–248PubMedGoogle Scholar
  32. 32.
    Ruiz M, Torres A, Ewig S et al. (2000) Noninvasive versus invasive microbial investigation in ventilator-associated pneumonia: evaluation of outcome. Am J Respir Crit Care Med 162: 119–125PubMedGoogle Scholar
  33. 33.
    Safdar N, Dezfulian C, Collard HR, Saint S (2005) Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med 33: 2184–2193PubMedCrossRefGoogle Scholar
  34. 34.
    Sanchez-Nieto JM, Torres A, Garcia-Cordoba F et al. (1998) Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated pneumonia: a pilot study. Am J Respir Crit Care Med 157: 371–376PubMedGoogle Scholar
  35. 35.
    Sandiumenge A, Diaz E, Bodi M, Rello J (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of the tarragona strategy. Intensive Care Med 29: 876–883PubMedGoogle Scholar
  36. 36.
    Shorr AF, Sherner JH, Jackson WL, Kollef MH (2005) Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med 33: 46–53PubMedCrossRefGoogle Scholar
  37. 37.
    Sole VJ, Fernandez JA, Benitez AB et al. (2000) Impact of quantitative invasive diagnostic techniques in the management and outcome of mechanically ventilated patients with suspected pneumonia. Crit Care Med 28: 2737–2741CrossRefGoogle Scholar
  38. 38.
    Sole-Violan J, Rodriguez de CF, Rey A et al. (1994) Usefulness of microscopic examination of intracellular organisms in lavage fluid in ventilator-associated pneumonia. Chest 106: 889–894PubMedCrossRefGoogle Scholar
  39. 39.
    Torres A, El-Ebiary M (2000) Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest 117: 198S–202SPubMedCrossRefGoogle Scholar
  40. 40.
    Valles J, Rello J, Fernandez R et al. (1994) Role of bronchoalveolar lavage in mechanically ventilated patients with suspected pneumonia. Eur J Clin Microbiol Infect Dis 13: 549–558PubMedCrossRefGoogle Scholar
  41. 41.
    Welte T (2006) Die nosokomiale Pneumonie. Intensivmedizin 43: 301–309CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Abteilung für Operative IntensivmedizinUniversitätsklinikum der RWTH-AachenAachenDeutschland

Personalised recommendations