Der Anaesthesist

, Volume 57, Issue 2, pp 151–164 | Cite as

Mikrozirkulation beim Intensivpatienten

Von der Physiologie zur Klinik
Intensivmedizin

Zusammenfassung

Die Mikrozirkulation ist in ihrer Anatomie und Physiologie ein in sich abgeschlossenes, einzigartiges Organsystem im menschlichen Körper. Es ist der Ort, an dem der Gasaustausch und die Versorgung der Zellen mit Nährstoffen stattfinden. Er ist aber auch der Ort, der im Rahmen eines Schockgeschehens verschiedene pathologische Veränderungen erfährt und damit die Sauerstoffversorgung zu den einzelnen Geweben und Zellen gefährdet. Bei einer systemischen Inflammation kommt es so z. B. zu einem heterogenen mikrozirkulatorischen Blutfluss, interstitieller Gewebsödembildung, veränderter Viskosität, Leukozytenaktivierung, Störung des Koagulationssystems und zu einem Zusammenbruch der endothelialen Barrierefunktion, die unweigerlich zu Einschränkungen im Sauerstofftransport zu den einzelnen Zellen und Geweben führen. Wird ein solcher Pathomechanismus nicht durchbrochen, so mündet das Versagen der Mikrozirkulation unweigerlich in einer Dysfunktion von Organsystemen. In diesem Übersichtsartikel soll neben einer kurzen Beschreibung der Physiologie der Mikrozirkulation und der Interaktion zwischen Makro- und Mikrozirkulation eine Darstellung der mikrozirkulatorischen Veränderungen durch einen systemisch inflammatorischen Respons beleuchtet werden. Schließlich werden verschiedene Therapieoptionen beschrieben, die experimentell zu einer Verbesserung der mikrozirkulatorischen Dysfunktion führen können.

Schlüsselwörter

Mikrozirkulatorische Dysfunktion Therapie Sepsis Mehrorganversagen 

Microcirculation of intensive care patients

From the physiology to the bedside

Abstract

The microcirculation is unique in its anatomy and physiology and is a self-contained organ system within the human body. It is the site where gas exchange and nutrient supply takes place, but it is also the site which experiences pathological alterations during various shock states and therefore compromises the oxygen supply to tissues and organs. Systemic inflammation for example leads amongst others to increased heterogeneous blood flow, formation of interstitial edema, altered viscosity, leukocyte activation, disturbances in the coagulation system, and to a breakdown of the endothelial barrier function. These alterations inevitably lead to limitations of the oxygen supply to tissues. Without interruption of these pathomechanisms, the dysfunction of the microcirculation will consequently result in organ dysfunction. In this review article a short description of the microcirculatory physiology, the interaction between the macrocirculation and the microcirculation, as well as microcirculatory alterations generated by a systemic inflammatory response will be given. Finally, various therapy options will be described, which, experimentally, can lead to an improvement in microcirculatory dysfunction.

Keywords

Microcirculatory dysfunction Sepsis Therapy Multiple organ dysfunction 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Albanese J, Leone M, Garnier F et al. (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539PubMedGoogle Scholar
  2. 2.
    Almog Y, Novack V, Eisinger M et al. (2007) The effect of statin therapy on infection-related mortality in patients with atherosclerotic diseases. Crit Care Med 35: 372–378PubMedGoogle Scholar
  3. 3.
    Backer D de, Berre J, Zhang H et al. (1993) Relationship between oxygen uptake and oxygen delivery in septic patients: effects of prostacyclin versus dobutamine. Crit Care Med 21: 1658–1664PubMedGoogle Scholar
  4. 4.
    Backer D de, Creteur J, Preiser JC et al. (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104PubMedGoogle Scholar
  5. 5.
    Backer D de, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31: 1659–1667PubMedGoogle Scholar
  6. 6.
    Backer D de, Creteur J, Dubois MJ et al. (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147: 91–99PubMedGoogle Scholar
  7. 7.
    Barkhausen T, Krettek C, Griensven M van (2005) L-selectin: adhesion, signalling and its importance in pathologic posttraumatic endotoxemia and non-septic inflammation. Exp Toxicol Pathol 57: 39–52PubMedGoogle Scholar
  8. 8.
    Barroso-Aranda J, Schmid-Schonbein GW, Zweifach BW, Engler RL (1988) Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock. Circ Res 63: 437–447PubMedGoogle Scholar
  9. 9.
    Bauer PR (2002) Microvascular responses to sepsis: clinical significance. Pathophysiology 8: 141–148PubMedGoogle Scholar
  10. 10.
    Berghe G van den, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–461PubMedGoogle Scholar
  11. 11.
    Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedGoogle Scholar
  12. 12.
    Borgel D, Bornstain C, Reitsma PH et al. (2007) A comparative study of the protein C pathway in septic and non-septic patients with organ failure. Am J Respir Crit Care Med 176: 878–885PubMedGoogle Scholar
  13. 13.
    Bouskela E, Rubanyi GM (1995) Effects of iloprost, a stable prostacyclin analog, and its combination with NW-nitro-L-arginine on early events following lipopolysaccharide injection: observations in the hamster cheek pouch microcirculation. Int J Microcirc Clin Exp 15: 170–180PubMedCrossRefGoogle Scholar
  14. 14.
    Brett J, Gerlach H, Nawroth P et al. (1989) Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med 169: 1977–1991PubMedGoogle Scholar
  15. 15.
    Brunkhorst FM, Kuhnt E, Engel C et al. (SepNet) GCNS (2005) Intensive insulin therapy in patients with severe sepsis and septic shock is associated with an increased rate of hypoglycaemia – results from a randomized multicenter study (VISEP). Infection 33: 19Google Scholar
  16. 16.
    Bucher M, Kees F, Taeger K, Kurtz A (2003) Cytokines down-regulate alpha1-adrenergic receptor expression during endotoxemia. Crit Care Med 31: 566–571PubMedGoogle Scholar
  17. 17.
    Busse R, Fleming I (2006) Vascular endothelium and blood flow. Handb Exp PharmacolHeftnummer fehlt: 43–78Google Scholar
  18. 18.
    Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med 28: 1208–1217PubMedGoogle Scholar
  19. 19.
    Cerra FB, Hassett J, Siegel JH (1978) Vasodilator therapy in clinical sepsis with low output syndrome. J Surg Res 25: 180–183PubMedGoogle Scholar
  20. 20.
    Collen D (1999) The plasminogen (fibrinolytic) system. Thromb Haemost 82: 259–270PubMedGoogle Scholar
  21. 21.
    Creasey AA, Reinhart K (2001) Tissue factor pathway inhibitor activity in severe sepsis. Crit Care Med 29: S126–129PubMedGoogle Scholar
  22. 22.
    Crowell JW, Smith EE (1964) Oxygen deficit and irreversible hemorrhagic shock. Am J Physiol 206: 313–316PubMedGoogle Scholar
  23. 23.
    Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450: 363–371PubMedGoogle Scholar
  24. 24.
    Deruddre S, Cheisson G, Mazoit JX et al. (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–1562PubMedGoogle Scholar
  25. 25.
    Devaraj S, Chan E, Jialal I (2006) Direct demonstration of an antiinflammatory effect of simvastatin in subjects with the metabolic syndrome. J Clin Endocrinol Metab 91: 4489–4496PubMedGoogle Scholar
  26. 26.
    Dhainaut JF, Yan SB, Joyce DE et al. (2004) Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost 2: 1924–1933PubMedGoogle Scholar
  27. 27.
    Dunser MW, Wenzel V, Mayr AJ, Hasibeder WR (2003) Management of vasodilatory shock: defining the role of arginine vasopressin. Drugs 63: 237–256PubMedGoogle Scholar
  28. 28.
    Durant R, Klouche K, Delbosc S et al. (2004) Superoxide anion overproduction in sepsis: effects of vitamin E and simvastatin. Shock 22: 34–39PubMedGoogle Scholar
  29. 29.
    Eichelbronner O, Reinelt H, Wiedeck H et al. (1996) Aerosolized prostacyclin and inhaled nitric oxide in septic shock – different effects on splanchnic oxygenation? Intensive Care Med 22: 880–887PubMedGoogle Scholar
  30. 30.
    Ellis CG, Bateman RM, Sharpe MD et al. (2002) Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol 282: H156–164PubMedGoogle Scholar
  31. 31.
    Emerson GG, Segal SS (2001) Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. Am J Physiol Heart Circ Physiol 280: H160–167PubMedGoogle Scholar
  32. 32.
    Esmon C (2000) The protein C pathway. Crit Care Med 28: S44–48PubMedGoogle Scholar
  33. 33.
    Esmon CT (2006) Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost 32 [Suppl 1]: 49–60Google Scholar
  34. 34.
    Fang X, Tang W, Sun S et al. (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34: S447–453PubMedGoogle Scholar
  35. 35.
    Farquhar I, Martin CM, Lam C et al. (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61: 190–196PubMedGoogle Scholar
  36. 36.
    Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205PubMedGoogle Scholar
  37. 37.
    Friesenecker B, Tsai AG, Dunser MW et al. (2004) Oxygen distribution in microcirculation after arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol 287: H1792–1800PubMedGoogle Scholar
  38. 38.
    Fruchterman TM, Spain DA, Wilson MA et al. (1998) Selective microvascular endothelial cell dysfunction in the small intestine following resuscitated hemorrhagic shock. Shock 10: 417–422PubMedGoogle Scholar
  39. 39.
    Gallagher G, Sumpio P (1997) Vascular endothelial cells. In: Sumpio B, Sidawy A (eds) Basic science of vascular disease. Futura, Mount Kisco, New York, pp 151–186Google Scholar
  40. 40.
    Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93: 105–113PubMedGoogle Scholar
  41. 41.
    Garrison RN, Zakaria R el (2005) Peritoneal resuscitation. Am J Surg 190: 181–185PubMedGoogle Scholar
  42. 42.
    Germann R, Haisjackl M, Schwarz B et al. (1997) Inotropic treatment and intestinal mucosal tissue oxygenation in a model of porcine endotoxemia. Crit Care Med 25: 1191–1197PubMedGoogle Scholar
  43. 43.
    Germann R, Haisjackl M, Schwarz B et al. (1997) Dopamine and intestinal mucosal tissue oxygenation in a porcine model of haemorrhage. Br J Anaesth 79: 357–362PubMedGoogle Scholar
  44. 44.
    Gierer P, Hoffmann JN, Mahr F et al. (2007) Activated protein C reduces tissue hypoxia, inflammation, and apoptosis in traumatized skeletal muscle during endotoxemia. Crit Care Med 35: 1966–1971PubMedGoogle Scholar
  45. 45.
    Godin DV, Tuchek JM, Garnett ME (1982) Studies on the interaction of Escherichia coli endotoxin with erythrocyte membranes. Can J Physiol Pharmacol 60: 977–985PubMedGoogle Scholar
  46. 46.
    Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55: 662–675PubMedGoogle Scholar
  47. 47.
    Granger DN, Richardson PD, Kvietys PR, Mortillaro NA (1980) Intestinal blood flow. Gastroenterology 78: 837–863PubMedGoogle Scholar
  48. 48.
    Gupta R, Plantinga LC, Fink NE et al. (2007) Statin use and hospitalization for sepsis in patients with chronic kidney disease. JAMA 297: 1455–1464PubMedGoogle Scholar
  49. 49.
    Hannemann L, Reinhart K, Meier-Hellmann A, Bredle DL (1994) Prostacyclin in septic shock. Chest 105: 1504–1510PubMedGoogle Scholar
  50. 50.
    Hansen PR (1994) In vitro studies on responses to pentoxifylline and aminophylline of rat mesenteric resistance vessels. Eur J Pharmacol 261: 105–110PubMedGoogle Scholar
  51. 51.
    Hiltebrand LB, Krejci V, Sigurdsson GH (2004) Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia. Anesthesiology 100: 1188–1197PubMedGoogle Scholar
  52. 52.
    Hirano S, Rees RS, Yancy SL et al. (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20: 1–14PubMedGoogle Scholar
  53. 53.
    Hoffmann JN, Vollmar B, Inthorn D et al. (2000) Antithrombin reduces leukocyte adhesion during chronic endotoxemia by modulation of the cyclooxygenase pathway. Am J Physiol Cell Physiol 279: C98–C107PubMedGoogle Scholar
  54. 54.
    Hoffmann JN, Vollmar B, Laschke MW et al. (2004) Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 32: 1011–1017PubMedGoogle Scholar
  55. 55.
    Hoffmann JN, Vollmar B, Romisch J et al. (2002) Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium. Crit Care Med 30: 218–225PubMedGoogle Scholar
  56. 56.
    Hollenberg SM, Easington CR, Osman J et al. (1999) Effects of nitric oxide synthase inhibition on microvascular reactivity in septic mice. Shock 12: 262–267PubMedGoogle Scholar
  57. 57.
    Humer MF, Phang PT, Friesen BP et al. (1996) Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol 81: 895–904PubMedGoogle Scholar
  58. 58.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9 [Suppl 4]: S13–19Google Scholar
  59. 59.
    Inoue A, Yanagisawa M, Kimura S et al. (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86: 2863–2867PubMedGoogle Scholar
  60. 60.
    Jerome SN, Akimitsu T, Korthuis RJ (1994) Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. Am J Physiol 267: H1329–1336PubMedGoogle Scholar
  61. 61.
    Jones SB, Romano FD (1990) Myocardial beta adrenergic receptor coupling to adenylate cyclase during developing septic shock. Circ Shock 30: 51–61PubMedGoogle Scholar
  62. 62.
    Joris I, Majno G, Corey EJ, Lewis RA (1987) The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction. Am J Pathol 126: 19–24PubMedGoogle Scholar
  63. 63.
    Knotzer H, Hasibeder WR (2007) Microcirculatory function monitoring at the bedside – a view from the intensive care. Physiol Meas 28: R65–86PubMedGoogle Scholar
  64. 64.
    Knotzer H, Pajk W, Maier S et al. (2006) Comparison of lactated Ringer’s, gelatine and blood resuscitation on intestinal oxygen supply and mucosal tissue oxygen tension in haemorrhagic shock. Br J Anaesth 97: 509–516PubMedGoogle Scholar
  65. 65.
    Knotzer H, Pajk W, Maier S et al. (2005) Arginine vasopressin reduces intestinal oxygen supply and mucosal tissue oxygen tension. Am J Physiol Heart Circ Physiol 289: H168–173PubMedGoogle Scholar
  66. 66.
    Kretschmar K, Engelhardt T (1994) Swelling of capillary endothelial cells contributes to traumatic hemorrhagic shock-induced microvascular injury: a morphologic and morphometric analysis. Int J Microcirc Clin Exp 14: 45–49PubMedGoogle Scholar
  67. 67.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94: 2077–2083PubMedGoogle Scholar
  68. 68.
    Langouche L, Vanhorebeek I, Vlasselaers D et al. (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115: 2277–2286PubMedGoogle Scholar
  69. 69.
    Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–238PubMedGoogle Scholar
  70. 70.
    Lehr HA, Bittinger F, Kirkpatrick CJ (2000) Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol 190: 373–386PubMedGoogle Scholar
  71. 71.
    Levraut J, Iwase H, Shao ZH et al. (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284: H549–558PubMedGoogle Scholar
  72. 72.
    Levy B, Bollaert PE, Charpentier C et al. (1997) Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med 23: 282–287PubMedGoogle Scholar
  73. 73.
    Levy B, Bollaert PE, Lucchelli JP et al. (1997) Dobutamine improves the adequacy of gastric mucosal perfusion in epinephrine-treated septic shock. Crit Care Med 25: 1649–1654PubMedGoogle Scholar
  74. 74.
    Ligtenberg JJ, Zijlstra JG (2004) The relative adrenal insufficiency syndrome revisited: which patients will benefit from low-dose steroids? Curr Opin Crit Care 10: 456–460PubMedGoogle Scholar
  75. 75.
    Lindbom L, Arfors KE (1985) Mechanisms and site of control for variation in the number of perfused capillaries in skeletal muscle. Int J Microcirc Clin Exp 4: 19–30PubMedGoogle Scholar
  76. 76.
    Ling MC, Ruddy TD, Kemp RA de et al. (2005) Early effects of statin therapy on endothelial function and microvascular reactivity in patients with coronary artery disease. Am Heart J 149: 1137PubMedGoogle Scholar
  77. 77.
    Liu L, Kubes P (2003) Molecular mechanisms of leukocyte recruitment: organ-specific mechanisms of action. Thromb Haemost 89: 213–220PubMedGoogle Scholar
  78. 78.
    Low PA, Tuck RR (1984) Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat. J Physiol 347: 513–524PubMedGoogle Scholar
  79. 79.
    Lu D, Mahmood A, Goussev A et al. (2004) Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg 101: 813–821PubMedGoogle Scholar
  80. 80.
    Madorin WS, Martin CM, Sibbald WJ (1999) Dopexamine attenuates flow motion in ileal mucosal arterioles in normotensive sepsis. Crit Care Med 27: 394–400PubMedGoogle Scholar
  81. 81.
    Majno G (1965) Ultrastructure of vascular membrane. In: Hamilton W, Dow P (eds) Handbook of physiology, Section 2: Circulation. American Physiological Society, Washington DC, pp 961–1034Google Scholar
  82. 82.
    Marraccini P, Fedele S, Marzilli M et al. (1996) Adenosine-induced renal vasoconstriction in man. Cardiovasc Res 32: 949–953PubMedGoogle Scholar
  83. 83.
    Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29: S99–106PubMedGoogle Scholar
  84. 84.
    Marti-Carvajal A, Salanti G, Cardona A (2007) Human recombinant activated protein C for severe sepsis. Cochrane Database Syst Rev: CD004388Google Scholar
  85. 85.
    Martin C, Papazian L, Perrin G et al. (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831PubMedGoogle Scholar
  86. 86.
    Martin CP, Talbert RL, Burgess DS, Peters JI (2007) Effectiveness of statins in reducing the rate of severe sepsis: a retrospective evaluation. Pharmacotherapy 27: 20–26PubMedGoogle Scholar
  87. 87.
    Mazzoni MC, Borgstrom P, Warnke KC et al. (1995) Mechanisms and implications of capillary endothelial swelling and luminal narrowing in low-flow ischemias. Int J Microcirc Clin Exp 15: 265–270PubMedGoogle Scholar
  88. 88.
    McGown CC, Brookes ZL (2007) Beneficial effects of statins on the microcirculation during sepsis: the role of nitric oxide. Br J Anaesth 98: 163–175PubMedGoogle Scholar
  89. 89.
    Mellander S, Johansson B (1968) Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev 20: 117–196PubMedGoogle Scholar
  90. 90.
    Merx MW, Liehn EA, Graf J et al. (2005) Statin treatment after onset of sepsis in a murine model improves survival. Circulation 112: 117–124PubMedGoogle Scholar
  91. 91.
    Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79: 703–761PubMedGoogle Scholar
  92. 92.
    Mombouli JV, Vanhoutte PM (1999) Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 31: 61–74PubMedGoogle Scholar
  93. 93.
    Muller B, Schmidtke M, Witt W (1987) Action of the stable prostacyclin analogue iloprost on microvascular tone and -permeability in the hamster cheek pouch. Prostaglandins Leukot Med 29: 187–198PubMedGoogle Scholar
  94. 94.
    Muravchick S, Levy RJ (2006) Clinical implications of mitochondrial dysfunction. Anesthesiology 105: 819–837PubMedGoogle Scholar
  95. 95.
    Murtagh B, Higano S, Lennon R et al. (2003) Role of incremental doses of intracoronary adenosine for fractional flow reserve assessment. Am Heart J 146: 99–105PubMedGoogle Scholar
  96. 96.
    Nakajima Y, Baudry N, Duranteau J, Vicaut E (2006) Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med 34: 1752–1757PubMedGoogle Scholar
  97. 97.
    Nelson JL, Alexander JW, Mao JX et al. (1999) Effect of pentoxifylline on survival and intestinal cytokine messenger RNA transcription in a rat model of ongoing peritoneal sepsis. Crit Care Med 27: 113–119PubMedGoogle Scholar
  98. 98.
    Oelschlager C, Romisch J, Staubitz A et al. (2002) Antithrombin III inhibits nuclear factor kappa B activation in human monocytes and vascular endothelial cells. Blood 99: 4015–4020PubMedGoogle Scholar
  99. 99.
    Opdenakker G (2001) New insights in the regulation of leukocytosis and the role played by leukocytes in septic shock. Verh K Acad Geneeskd Belg 63: 531–538; discussion 538–541PubMedGoogle Scholar
  100. 100.
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL (2003) Red blood cell rheology in sepsis. Intensive Care Med 29: 1052–1061PubMedGoogle Scholar
  101. 101.
    Pittet JF, Lacroix JS, Gunning K et al. (1990) Prostacyclin but not phentolamine increases oxygen consumption and skin microvascular blood flow in patients with sepsis and respiratory failure. Chest 98: 1467–1472PubMedGoogle Scholar
  102. 102.
    Pruefer D, Makowski J, Schnell M et al. (2002) Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation 106: 2104–2110PubMedGoogle Scholar
  103. 103.
    Pruefer D, Scalia R, Lefer AM (1999) Simvastatin inhibits leukocyte-endothelial cell interactions and protects against inflammatory processes in normocholesterolemic rats. Arterioscler Thromb Vasc Biol 19: 2894–2900PubMedGoogle Scholar
  104. 104.
    Raczka E, Quintana A (1999) Effects of intravenous administration of prostacyclin on regional blood circulation in awake rats. Br J Pharmacol 126: 1325–1332PubMedGoogle Scholar
  105. 105.
    Radermacher P, Buhl R, Santak B et al. (1995) The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intensive Care Med 21: 414–421PubMedGoogle Scholar
  106. 106.
    Redl-Wenzl EM, Armbruster C, Edelmann G et al. (1993) The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med 19: 151–154PubMedGoogle Scholar
  107. 107.
    Riegger GA, Elsner D, Kromer EP (1989) Circulatory and renal control by prostaglandins and renin in low cardiac output in dogs. Am J Physiol 256: H1079–1086PubMedGoogle Scholar
  108. 108.
    Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377PubMedGoogle Scholar
  109. 109.
    Rowell L (1986) Cutaneous and skeletal muscle circulation. Oxford University Press, OxfordGoogle Scholar
  110. 110.
    Rowell L (1986) General principles of vascular control. Oxford University Press, OxfordGoogle Scholar
  111. 111.
    Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72: 210–219PubMedGoogle Scholar
  112. 112.
    Sakr Y, Dubois MJ, Backer D de et al. (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–1831PubMedGoogle Scholar
  113. 113.
    Salak N, Pajk W, Knotzer H et al. (2001) Effects of epinephrine on intestinal oxygen supply and mucosal tissue oxygen tension in pigs. Crit Care Med 29: 367–373PubMedGoogle Scholar
  114. 114.
    Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86: 341–346PubMedGoogle Scholar
  115. 115.
    Scalia R, Stalker TJ (2002) Microcirculation as a target for the anti-inflammatory properties of statins. Microcirculation 9: 431–442PubMedGoogle Scholar
  116. 116.
    Scheeren T, Susanto F, Reinauer H et al. (1994) Prostacyclin improves glucose utilization in patients with sepsis. J Crit Care 9: 175–184PubMedGoogle Scholar
  117. 117.
    Schwarz B, Hofstotter H, Salak N et al. (2001) Effects of norepinephrine and phenylephrine on intestinal oxygen supply and mucosal tissue oxygen tension. Intensive Care Med 27: 593–601PubMedGoogle Scholar
  118. 118.
    Sennoun N, Montemont C, Gibot S et al. (2007) Comparative effects of early versus delayed use of norepinephrine in resuscitated endotoxic shock. Crit Care Med 35: 1736–1740PubMedGoogle Scholar
  119. 119.
    Shipley R, Study R (1951) Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery pressure. Am J Physiol 167: 676–688PubMedGoogle Scholar
  120. 120.
    Shires GT, Cunningham JN, Backer CR et al. (1972) Alterations in cellular membrane function during hemorrhagic shock in primates. Ann Surg 176: 288–295PubMedGoogle Scholar
  121. 121.
    Shires GT, Fisher O, Murphy P et al. (2007) Recombinant activated protein C induces dose-dependent changes in inflammatory mediators, tissue damage, and apoptosis in in vivo rat model of sepsis. Surg Infect (Larchmt) 8: 377–386Google Scholar
  122. 122.
    Sielenkamper AW, Meyer J, Kloppenburg H et al. (2001) The effects of sepsis on gut mucosal blood flow in rats. Eur J Anaesthesiol 18: 673–678PubMedGoogle Scholar
  123. 123.
    Sordia T, Tatarishvili J, McHedlishvili G (2006) Hemorheological disorders in the microcirculation during septic shock in rats. Clin Hemorheol Microcirc 35: 223–226PubMedGoogle Scholar
  124. 124.
    Spronk PE, Ince C, Gardien MJ et al. (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–1396PubMedGoogle Scholar
  125. 125.
    Steeb GD, Wilson MA, Garrison RN (1992) Pentoxifylline preserves small-intestine microvascular blood flow during bacteremia. Surgery 112: 756–763; discussion 763–754PubMedGoogle Scholar
  126. 126.
    Stringer SE, Gallagher JT (1997) Heparan sulphate. Int J Biochem Cell Biol 29: 709–714PubMedGoogle Scholar
  127. 127.
    Szekanecz Z, Koch AE (2004) Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin North Am 30: 97–114PubMedGoogle Scholar
  128. 128.
    Taylor FB Jr, Chang A, Ruf W et al. (1991) Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33: 127–134PubMedGoogle Scholar
  129. 129.
    Taylor FB Jr, Toh CH, Hoots WK et al. (2001) Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 86: 1327–1330PubMedGoogle Scholar
  130. 130.
    Teesalu R, Korgevee A (1988) The influence of prostacyclin on hemodynamic and coronary blood flow in dogs. Biomed Biochim Acta 47: S56–59PubMedGoogle Scholar
  131. 131.
    Thomsen RW, Hundborg HH, Johnsen SP et al. (2006) Statin use and mortality within 180 days after bacteremia: a population-based cohort study. Crit Care Med 34: 1080–1086PubMedGoogle Scholar
  132. 132.
    Tiefenbacher CP, Friedrich S, Bleeke T et al. (2004) ACE inhibitors and statins acutely improve endothelial dysfunction of human coronary arterioles. Am J Physiol Heart Circ Physiol 286: H1425–1432PubMedGoogle Scholar
  133. 133.
    Tighe D, Moss R, Hynd J et al. (1990) Pretreatment with pentoxifylline improves the hemodynamic and histologic changes and decreases neutrophil adhesiveness in a pig fecal peritonitis model. Crit Care Med 18: 184–189PubMedGoogle Scholar
  134. 134.
    Treschan TA, Peters J (2006) The vasopressin system: physiology and clinical strategies. Anesthesiology 105: 599–612; quiz 639–540PubMedGoogle Scholar
  135. 135.
    Trzeciak S, Dellinger RP, Parrillo JE et al. (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98, 98 e81–82PubMedGoogle Scholar
  136. 136.
    Undas A, Brummel KE, Musial J et al. (2001) Simvastatin depresses blood clotting by inhibiting activation of prothrombin, factor V, and factor XIII and by enhancing factor Va inactivation. Circulation 103: 2248–2253PubMedGoogle Scholar
  137. 137.
    Vanhorebeek I, Vos R de, Mesotten D et al. (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365: 53–59PubMedGoogle Scholar
  138. 138.
    Voisin L, Breuille D, Ruot B et al. (1998) Cytokine modulation by PX differently affects specific acute phase proteins during sepsis in rats. Am J Physiol 275: R1412–1419PubMedGoogle Scholar
  139. 139.
    Walley KR (1996) Heterogeneity of oxygen delivery impairs oxygen extraction by peripheral tissues: theory. J Appl Physiol 81: 885–894PubMedGoogle Scholar
  140. 140.
    Warren BL, Eid A, Singer P et al. (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286: 1869–1878PubMedGoogle Scholar
  141. 141.
    Wiel E, Vallet B, Cate H ten (2005) The endothelium in intensive care. Crit Care Clin 21: 403–416PubMedGoogle Scholar
  142. 142.
    Wu CC, Liao MH, Chen SJ, Yen MH (1999) Pentoxifylline improves circulatory failure and survival in murine models of endotoxaemia. Eur J Pharmacol 373: 41–49PubMedGoogle Scholar
  143. 143.
    Wu KK (1997) Prostacyclin and nitric oxide-related gene transfer in preventing arterial thrombosis and restenosis. Agents Actions Suppl 48: 107–123PubMedGoogle Scholar
  144. 144.
    Yamamoto T, Tada T, Brodsky SV et al. (2002) Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Renal Physiol 282: F1150–1155PubMedGoogle Scholar
  145. 145.
    Yasuda H, Yuen PS, Hu X et al. (2006) Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects. Kidney Int 69: 1535–1542PubMedGoogle Scholar
  146. 146.
    Zanferrari C, Razumovsky AY, Lavados PM et al. (2001) Effect of adenosine on cerebral blood flow velocity. J Neuroimaging 11: 272–279PubMedCrossRefGoogle Scholar
  147. 147.
    Zeerleder S, Hack CE, Wuillemin WA (2005) Disseminated intravascular coagulation in sepsis. Chest 128: 2864–2875PubMedGoogle Scholar
  148. 148.
    Zhao KS, Junker D, Delano FA, Zweifach BW (1985) Microvascular adjustments during irreversible hemorrhagic shock in rat skeletal muscle. Microvasc Res 30: 143–153PubMedGoogle Scholar
  149. 149.
    Zweifach BW (1952) Functional deterioration of terminal vascular bed in irreversible hemorrhagic shock. Ann N Y Acad Sci 55: 370–380PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Universitätsklinik für Anästhesiologie und Allgemeine IntensivmedizinMedizinische Universität InnsbruckInnsbruckÖsterreich
  2. 2.Klinik für Anästhesiologie und Allgemeine IntensivmedizinKrankenhaus der Barmherzigen Schwestern RiedRied i.I.Österreich

Personalised recommendations