Der Anaesthesist

, Volume 56, Issue 8, pp 797–804

Fallgruben in der Magnetresonanztomographie

Was sollte der Anästhesist wissen?
  • S. v. Paczynski
  • K.P. Braun
  • W. Müller-Forell
  • C. Werner
Allgemeinanästhesie

Zusammenfassung

Das sich kontinuierlich erweiternde Indikationsspektrum der Magnetresonanztomographie (MRT) ist eine Herausforderung für die Anästhesiologie, die zunehmend für die Betreuung von Patienten während der Untersuchung hinzugezogen wird. Als Folge der speziellen Technik der MRT unterscheidet sich die anästhesiologische Tätigkeit dort erheblich von der im Operationssaal. Neben dem permanenten starken Magnetfeld bergen auch die intermittierend angewendeten Hochfrequenzimpulse ein mögliches Gefahrenpotenzial. Besonders gefährdet sind Patienten mit Metallimplantaten (z. B. Herzschrittmacher). Zur sicheren Versorgung der Patienten im MRT ist eine spezielle, MRT-kompatible Anästhesieausstattung nötig. Ungeeignete Geräte können neben Fehlfunktionen auch durch Projektileffekte (Hereinziehen ferromagnetischer Teile in den Magneten) zu Verletzungen von Patienten führen. Die aktuelle MRT-Technik, die damit verbundenen Gefahren für den Patienten und die Besonderheiten der anästhesiologischen Tätigkeit werden zusammenfassend dargestellt.

Schlüsselwörter

Magnetresonanztomographie MRT-Technik Anästhesieausstattung Gefahren Anästhesieverfahren 

Pitfalls in magnetic resonance imaging

What should the anaesthesiologist know?

Abstract

The constantly extending indication spectrum of magnetic resonance imaging (MRI) is a challenge for the anaesthesiologist, who is being increasingly more consulted for assistance during the examination. Due to the special technology of MRI the anaesthetic technique differs substantially from that in the operating theatre. In addition to the permanent strong magnetic field the intermittently used high frequency impulses are also a potential danger for the patient. Patients with metal implants (e.g. cardiac pacemaker) are particularly at risk. For the safe treatment of patients during MRI a special MRI compatible anaesthesia equipment is necessary. Unsuitable devices can lead to malfunctioning or to projectile effects (attracting ferromagnetic objects into the magnet) causing injury to the patients. This paper describes the MRI technology and the associated dangers for the patient as well as the characteristics of the anaesthetic techniques.

Keywords

Magnetic resonance imaging MRI technology Anaesthetic equipment Dangers Anaesthetic procedures 

Literatur

  1. 1.
    MacManus B (2000) Editorial. Trained nurses can provide safe and effective sedation of MRI in pediatric patients. Can J Anesth 47: 197–200PubMedGoogle Scholar
  2. 2.
    Bund Deutscher Anaesthesisten/Deutsche Gesellschaft für Anaesthesiologie und Intensivmedizin (1995) Ausstattung des anästhesiologischen Arbeitsplatzes. Fortschreibung der Richtlinien der DGAI und des BDA. Anaesthesiol Intensivmed 36: 250–254Google Scholar
  3. 3.
    American Society of Anesthesiologists (2005) Standard for basic anesthetic monitoring. American Society of Anesthesiologists, Park Ridge IL. http://www.asahq.org/publicationsAndServices/standards/02.pdf
  4. 4.
    American Society of Anesthesiologists (2003) Guidelines for non-operating room anesthetizing locations. American Society of Anesthesiologists, Park Ridge IL. http://www.asahq.org/publicationsAndServices/standards/14.pdf
  5. 5.
    Association of Anaesthetists of Great Britain and Ireland (1994) Anaesthetic-related equipment. AAGBI, LondonGoogle Scholar
  6. 6.
    Association of Anaesthetists of Great Britain and Ireland (2002) Provision of anaesthetic service in magnetic resonance units. AAGBI, LondonGoogle Scholar
  7. 7.
    Litt L, Cauldwell CB (2002) Being extra safe when providing anesthesia for MRI examinations. ASA Newsletter 66Google Scholar
  8. 8.
    CDRH Magnetic Resonance Working Group (1997) A primer on medical device interactions with magnetic resonance imaging systems. US Department of Health and Human Services, FDA, Center for Devices and Radiological Health. http://www.fda.gov/cdrh/ode/primerf6.html
  9. 9.
    Shellock FG; Institute of Magnetic Resonance Safety, Education and Research. http: //www.mrisafety.comGoogle Scholar
  10. 10.
    Kanal E, Borgstede JP, Barkovich AJ et al. (2002) American College of Radiology white paper on MR safety. AJR 178: 1335–1347; 2004 Update and revisions. AJR 182: 1111–1114Google Scholar
  11. 11.
    Menon DK, Peden CJ, Hall AS et al. (1992) Magnetic resonance for the anaesthetist, part I. Anaesthesia 47: 240–255PubMedCrossRefGoogle Scholar
  12. 12.
    Peden CJ, Menon DK, Hall AS et al. (1992) Magnetic resonance for the anaesthetist, part II. Anaesthesia 47: 508–517PubMedCrossRefGoogle Scholar
  13. 13.
    Salukhe TV, Dob D, Sutton R (2004) Pacemakers and defibrillators: anaesthetic implications. Br J Anaesth 93: 95–104PubMedCrossRefGoogle Scholar
  14. 14.
    Achenbach S, Mushage W, Deim B (1997) Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 134: 467–473PubMedCrossRefGoogle Scholar
  15. 15.
    Murphy KJ, Brunberg JA (1997) Adult claustrophobia, anxiety and sedation in MRI. Magn Reson Imaging 15: 51–54PubMedCrossRefGoogle Scholar
  16. 16.
    Casselman JW, Offeciers FE, Govaerts PJ et al. (1997) Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 202: 773–781PubMedGoogle Scholar
  17. 17.
    Casselman JW (2002) Diagnostic imaging in clinical neuro-otology. Curr Opin Neurol 15: 23–30PubMedCrossRefGoogle Scholar
  18. 18.
    Filippi CG, Ulug AM, Lin D et al. (2001) Hyperintense signal abnormality in subarachnoid spaces and basal cisterns on MR images of children anesthetized with propofol: new fluid-attenuation inversion recovery finding. AJN Am J Neuroradiol 22: 394–399Google Scholar
  19. 19.
    Stoner T, Braff S, Khoshyomn S (2002) High signal in subarachnoid spaces on FLAIR MR images in an adult with propofol sedation. Neurology 23: 292Google Scholar
  20. 20.
    Whitby EH, Griffiths PD, Lonneker-Lammers T et al. (2004) Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 113: 150–152CrossRefGoogle Scholar
  21. 21.
    Zimmer C, Janssen M, Treschan A, Peters J (2004) Near-miss accident during magnetic resonance imaging by a „Flying Sevoflurane Vaporizer“ due to ferromagnetism undetectable by handheld magnet. Anesthesiology 100: 1329–1330PubMedCrossRefGoogle Scholar
  22. 22.
    Chaljub G, Kramer L, Johnson III R et al. (2001) Projectile cylinder accidents resulting from the presence of ferromagnetic nitrous oxide or oxygen tanks in the MR suite. AJR 177: 27–30PubMedGoogle Scholar
  23. 23.
    Farling P, McBrien M, Winder R (2003) Magnetic resonance compatible equipment: read the small print! Anaesthesia 58: 86–87PubMedCrossRefGoogle Scholar
  24. 24.
    Krauss B, Green S (2000) Sedation and analgesia for procedures in children. N Engl J Med 342: 938–945PubMedCrossRefGoogle Scholar
  25. 25.
    Lawson G (2000) Sedation of children for magnetic resonance imaging. Arch Dis Child 82: 150–154PubMedCrossRefGoogle Scholar
  26. 26.
    American Academy of Pediatrics, Committee on Drugs (1992) Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics 89: 1110–1115; Addendum 2002: Pediatrics 110: 836–838Google Scholar
  27. 27.
    Amundsen LB, Artru A, Dager S et al. (2005) Propofol sedation for longitudinal pediatric neuroimaging research. J Neurosurg Anesthesiol 17: 180PubMedCrossRefGoogle Scholar
  28. 28.
    Malviya S, Voepel-Lewis T, Eldevik O et al. (2000). Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84: 743–748PubMedGoogle Scholar
  29. 29.
    Keengwe I, Hedge S, Dearlove O et al. (1999) A structured sedation programme for magnetic resonance imaging examination in children. Anaesthesia 54: 1069–1072PubMedCrossRefGoogle Scholar
  30. 30.
    Levati A, Colombo N, Arosion E et al. (1996) Propofol anaesthesia in spontaneously breathing pediatric patients during magnetic resonance imaging. Acta Anaesthesiol Scand 40: 561–565PubMedCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Tabbert M (2001) Auswirkungen von Magnetresonanztomographie auf elektrisch stimulierende Implantate im menschlichen Körper. Diplomarbeit, Institut für Biomedizinische Technik, Universität, KarlsruheGoogle Scholar
  33. 33.
    Achenbach S, Moshage W, Diem B et al. (1997) Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 134: 467–473PubMedCrossRefGoogle Scholar
  34. 34.
    Akbar M, Stippich C, Aschof A (2005) Magnetic resonance imaging and cerebrospinal fluid shunt valves. N Engl J Med 353: 1413–1414PubMedCrossRefGoogle Scholar
  35. 35.
    Deutsche Gesellschaft für Anaesthesiologie und Intensivmedizin und Bund Deutscher Anaesthesisten (2004) Stellungnahme: Präoperatives Nüchternheitsgebot bei elektiven Eingriffe. Anaesthesiol Intensivmed 45: 722Google Scholar
  36. 36.
    American Society of Anesthesiologists (2004) Continuum of depth of sedation – Definition of general anesthesia and levels of sedation/analgesia. ASA House of Delegates. http://www.asahq.org/publicationsAndServices/standards/20.pdfGoogle Scholar
  37. 37.
    Lightdale J, Goldmann D, Feldman H et al. (2006) Microstream capnography improves patient monitoring during moderate sedation: A randomized, controlled trial. Pediatrics 117: 1170–1178CrossRefGoogle Scholar
  38. 38.
    Rupp K (1999) Beatmung in der Kinderanästhesie. In: Rupp K (Hrsg) Fibel der Kinderanästhesie. Draeger Medizintechnik, Lübeck, S 96–98, S 120–124Google Scholar
  39. 39.
    Birkholz T, Schmid M, Nimsky C et al. (2004) ECG artifacts during intraoperative high-filed MRI scanning. J Neurosurg Anesthesiol 16: 271–276PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • S. v. Paczynski
    • 1
  • K.P. Braun
    • 1
  • W. Müller-Forell
    • 2
  • C. Werner
    • 1
  1. 1.Klinik für AnästhesiologieJohannes Gutenberg-UniversitätMainzDeutschland
  2. 2.Institut für NeuroradiologieKlinikum der Johannes Gutenberg-UniversitätMainzDeutschland

Personalised recommendations