Der Anaesthesist

, Volume 56, Issue 6, pp 538–556

Pharmakokinetische/pharmakodynamische Modelle für Inhalationsanästhetika

Leitthema

Zusammenfassung

Pharmakokinetische Modelle können in physiologisch basierte und empirische Modelle unterschieden werden. Traditionell erfolgt die Beschreibung der Pharmakokinetik volatiler Anästhetika mithilfe physiologisch basierter Modelle unter Verwendung der jeweiligen Gewebe-Blut-Verteilungskoeffizienten. Die Kompartimente des empirischen Modells weisen kein anatomisches Korrelat auf, sondern sind durch das mathematische Verfahren der Parameterabschätzung entstanden. Die endexspiratorische Konzentration von volatilen Anästhetika entspricht nahezu der arteriellen Konzentration, daher kommt der Beschreibung des Übertritts zwischen Plasma und Wirkort für volatile Anästhetika eine zentrale Rolle zu. Der wichtigste Parameter ist hierbei der ke0-Wert; dieser ist eine zeitliche Konstante und beschreibt die zeitliche Verzögerung beim Übergang zwischen dem zentralen Kompartiment und dem berechneten Effektkompartiment. Die ke0-Werte für Sevofluran und Isofluran unterscheiden sich nicht; der Konzentrationsausgleich zwischen dem Zentral- und dem Effektkompartiment bei Desfluran hingegen erfolgt doppelt so schnell. In der klinischen Praxis werden volatile Anästhetika in der Regel mit N2O und/oder Opioiden kombiniert. Dabei ergibt sich eine additive Interaktion von volatilen Anästhetika und N2O. Die Interaktion zwischen volatilen Anästhetika und Opioiden ist hingegen synergistisch. Für die klinisch weit verbreitete Dreifachkombination von volatilen Anästhetika, N2O und Opioiden liegen hingegen kaum Interaktionsuntersuchungen vor.

Schlüsselwörter

Volatile Anästhetika N2Opioide Verteilungskoeffizient ke0-Wert EEG-Index 

Pharmacokinetic-pharmacodynamic models for inhaled anaesthetics

Abstract

Pharmacokinetic models can be differentiated into two groups: physiological-based models and empirical models. Traditionally the pharmacokinetics of volatile anaesthetics are described using physiological-based models together with the respective tissue-blood distribution coefficients. The compartments of the empirical model have no anatomical equivalents and are merely the product of the mathematical procedure for parameter estimation. The end expiratory concentration of volatile anaesthetics is approximately equal to the arterial concentration and, therefore, the description of the transition between plasma and effect site for volatile anaesthetics plays a central role. The most important parameter here is the ke0 value which is a time constant and describes the time delay for the transition from the central compartment to the calculated effect compartment. The ke0 values for sevoflurane and isoflurane are the same but the concentration balance between the end-tidal concentration and the effect compartment occurs twice as quickly with desflurane. In clinical practice volatile anaesthetics are normally combined with N2O and/or opioids. This results in an additive interaction between volatile anaesthetics and N2O but a synergistic interaction of volatile anaesthetics with opioids. However, there are relatively few investigations on the interactions between the clinically widely used combination of volatile anaesthetics, N2O and opioids.

Keywords

Volatile anaesthetics N2Opioids Distribution coefficient ke0 value EEG index 

Literatur

  1. 1.
    Anderson RE, Barr G, Jakobsson JG (2005) Cerebral state index during anaesthetic induction: a comparative study with propofol or nitrous oxide. Acta Anaesthesiol Scand 49: 750–753CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson RE, Jakobsson JG (2004) Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent. Br J Anaesth 92: 167–170CrossRefPubMedGoogle Scholar
  3. 3.
    Antognini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79: 1244–1249PubMedGoogle Scholar
  4. 4.
    Antognini JF (1993) Hypothermia eliminates isoflurane requirements at 20 degrees C. Anesthesiology 78: 1152–1156CrossRefPubMedGoogle Scholar
  5. 5.
    Bailey JM (1989) The pharmacokinetics of volatile anesthetic agent elimination: a theoretical study. J Pharmacokinet Biopharm 17: 109–123CrossRefPubMedGoogle Scholar
  6. 6.
    Bailey JM (1997) Context-sensitive half-times and other decrement times of inhaled anesthetics. Anesth Analg 85: 681–686CrossRefPubMedGoogle Scholar
  7. 7.
    Bialas P, Ellerkmann R, Bruhn J et al. (2005) Model-independent calculation of ke0 values. Eur J Anaesth [Suppl 34] 22: A-141Google Scholar
  8. 8.
    Bowerman B, O’Connell R (eds) (1990) Simple coefficients of determination and correlation, linear statistical models (an applied approach). PWS-KENT, Boston, pp 174–183Google Scholar
  9. 9.
    Bruhn J, Bouillon TW, Shafer SL (2001) Onset of propofol-induced burst suppression may be correctly detected as deepening of anaesthesia by approximate entropy but not by bispectral index. Br J Anaesth 87: 505–507CrossRefPubMedGoogle Scholar
  10. 10.
    Bruhn J (2003) Vergleich verschiedener EEG-Parameter: Spektrale Eckfrequenz 95, approximate Entropie und Bispektralindex. Anaesthesiol Intensivmed 44: 17–21Google Scholar
  11. 11.
    Brunner MD, Braithwaite P, Jhaveri R et al. (1994) MAC reduction of isoflurane by sufentanil. Br J Anaesth 72: 42–46CrossRefPubMedGoogle Scholar
  12. 12.
    Cowles AL, Borgstedt HH, Gillies AJ (1971) Tissues weights and rates of blood flow in man for the prediction of anesthetic uptake and distribution. Anesthesiology 35: 523–526CrossRefPubMedGoogle Scholar
  13. 13.
    Cranfield KA, Bromley LM (1997) Minimum alveolar concentration of desflurane for tracheal extubation in deeply anaesthetized, unpremedicated children. Br J Anaesth 78: 370–371PubMedGoogle Scholar
  14. 14.
    Cromwell TH, Eger EI 2nd, Stevens WC, Dolan WM (1971) Forane uptake, excretion, and blood solubility in man. Anesthesiology 35: 401–408PubMedGoogle Scholar
  15. 15.
    Daniel M, Weiskopf RB, Noorani M, Eger EI 2nd (1998) Fentanyl augments the blockade of the sympathetic response to incision (MAC-BAR) produced by desflurane and isoflurane: desflurane and isoflurane MAC-BAR without and with fentanyl. Anesthesiology 88: 43–49CrossRefPubMedGoogle Scholar
  16. 16.
    Davis NR, Mapleson WW (1981) Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics. Br J Anaesth 53: 399–405CrossRefPubMedGoogle Scholar
  17. 17.
    De Jong RH, Eger EI (1975) MAC expanded: AD50 and AD95 values of common inhalation anesthetics in man. Anesthesiology 42: 384–389PubMedGoogle Scholar
  18. 18.
    Dwyer R, Bennett HL, Eger EI 2nd, Heilbron D (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77: 888–898CrossRefPubMedGoogle Scholar
  19. 19.
    Eger EI 2nd, Bowland T, Ionescu P et al. (1997) Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products. Anesthesiology 87: 517–526CrossRefPubMedGoogle Scholar
  20. 20.
    Eger EI 2nd, Gong D, Koblin DD et al. (1998) The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers. Anesth Analg 86: 414–421CrossRefPubMedGoogle Scholar
  21. 21.
    Eger EI 2nd, Johnson BH (1987) MAC of I-653 in rats, including a test of the effect of body temperature and anesthetic duration. Anesth Analg 66: 974–976PubMedGoogle Scholar
  22. 22.
    Eger EI 2nd, Weiskopf RB, Eisenkraft (2002) The pharmacology of inhaled anesthetics. Br J Anaesth 56: 223–232Google Scholar
  23. 23.
    Eger EI 3rd (1987) Stability of I-653 in soda lime. Anesth Analg 66: 983–985PubMedGoogle Scholar
  24. 24.
    Eger EI, Lampe GH, Wauk LZ et al. (1990) Clinical pharmacology of nitrous oxide: an argument for its continued use. Anesth Analg 71: 575–585CrossRefPubMedGoogle Scholar
  25. 25.
    Eger EI, Laster MJ, Gregory GA et al. (2003) Women appear to have the same minimum alveolar concentration as men: a retrospective study. Anesthesiology 99: 1059–1061CrossRefPubMedGoogle Scholar
  26. 26.
    Eger EI, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26: 756–763PubMedGoogle Scholar
  27. 27.
    Eger EI (2002) A brief history of the origin of minimum alveolar concentration (MAC). Anesthesiology 96: 238–239CrossRefPubMedGoogle Scholar
  28. 28.
    Eger RR, Eger EI 2nd (1985) Effect of temperature and age on the solubility of enflurane, halothane, isoflurane, and methoxyflurane in human blood. Anesth Analg 64: 640–642CrossRefPubMedGoogle Scholar
  29. 29.
    Ellerkmann R, Kreuer S, Roepcke H et al. (2005) A model-independent approach estimating ke0 values, describing the equilibration rate constant between plasma and effect-site concentration. Anesthesiology 103: A763Google Scholar
  30. 30.
    Ellerkmann RK, Liermann VM, Alves TM et al. (2004) Spectral entropy and bispectral index as measures of the electroencephalographic effects of sevoflurane. Anesthesiology 101: 1275–1282CrossRefPubMedGoogle Scholar
  31. 31.
    Ellerkmann RK, Soehle M, Alves TM et al. (2006) Spectral entropy and bispectral index as measures of the electroencephalographic effects of propofol. Anesth Analg 102: 1456–1462CrossRefPubMedGoogle Scholar
  32. 32.
    Fragen RJ, Dunn KL (1996) The minimum alveolar concentration (MAC) of sevoflurane with and without nitrous oxide in elderly versus young adults. J Clin Anesth 8: 352–356CrossRefPubMedGoogle Scholar
  33. 33.
    Gin T, Chan MT (1994) Decreased minimum alveolar concentration of isoflurane in pregnant humans. Anesthesiology 81: 829–832CrossRefPubMedGoogle Scholar
  34. 34.
    Glass PS, Bloom M, Kearse L et al. (1997) Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 86: 836–847CrossRefPubMedGoogle Scholar
  35. 35.
    Glass PS (1998) Anesthetic drug interactions: an insight into general anesthesia – its mechanism and dosing strategies. Anesthesiology 88: 5–6CrossRefPubMedGoogle Scholar
  36. 36.
    Harris RS, Lazar O, Johansen JW, Sebel PS (2006) Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology 104: 1170–1175CrossRefPubMedGoogle Scholar
  37. 37.
    Hill AV (1910) The possible effect of the aggregration of the molecules of hemoglobin on its dissociation curves. J Physiol 40: iv–viiGoogle Scholar
  38. 38.
    Hornbein TF, Eger EI, Winter PM et al. (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 61: 553–556CrossRefPubMedGoogle Scholar
  39. 39.
    Hui TW, Short TG, Hong W et al. (1995) Additive interactions between propofol and ketamine when used for anesthesia induction in female patients. Anesthesiology 82: 641–648PubMedGoogle Scholar
  40. 40.
    Inomata S, Suwa T, Toyooka H, Suto Y (1998) End-tidal sevoflurane concentration for tracheal extubation and skin incision in children. Anesth Analg 87: 1263–1267CrossRefPubMedGoogle Scholar
  41. 41.
    Inomata S, Yaguchi Y, Taguchi M, Toyooka H (1999) End-tidal sevoflurane concentration for tracheal extubation (MACEX) in adults: comparison with isoflurane. Br J Anaesth 82: 852–856PubMedGoogle Scholar
  42. 42.
    Johansen JW, Sebel PS (2000) Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology 93: 1336–1344CrossRefPubMedGoogle Scholar
  43. 43.
    Jones RM, Cashman JN, Eger EI 2nd et al. (1990) Kinetics and potency of desflurance (I-653) in volunteers. Anesth Analg 70: 3–7CrossRefPubMedGoogle Scholar
  44. 44.
    Katoh T, Bito H, Sato S (2000) Influence of age on hypnotic requirement, bispectral index, and 95% spectral edge frequency associated with sedation induced by sevoflurane. Anesthesiology 92: 55–61CrossRefPubMedGoogle Scholar
  45. 45.
    Katoh T, Ikeda K, Bito H (1997) Does nitrous oxide antagonize sevoflurane-induced hypnosis? Br J Anaesth 79: 465–468PubMedGoogle Scholar
  46. 46.
    Katoh T, Ikeda K (1987) The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 66: 301–303CrossRefPubMedGoogle Scholar
  47. 47.
    Katoh T, Ikeda K (1998) The effects of fentanyl on sevoflurane requirements for loss of consciousness and skin incision. Anesthesiology 88: 18–24CrossRefPubMedGoogle Scholar
  48. 48.
    Katoh T, Kobayashi S, Suzuki A et al. (1999) The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology 90: 398–405CrossRefPubMedGoogle Scholar
  49. 49.
    Katoh T, Suguro Y, Ikeda T et al. (1993) Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 76: 348–352PubMedGoogle Scholar
  50. 50.
    Katoh T, Uchiyama T, Ikeda K (1994) Effect of fentanyl on awakening concentration of sevoflurane. Br J Anaesth 73: 322–325CrossRefPubMedGoogle Scholar
  51. 51.
    Keller O, Kreuer S, Bruhn J et al. (2006) The accuracy of two pharmacokinetic data sets for propofol. Eur J Anaesth [Suppl 37] 23: A-513Google Scholar
  52. 52.
    Kennedy RR, French RA, Gilles S (2004) The effect of a model-based predictive display on the control of end-tidal sevoflurane concentrations during low-flow anesthesia. Anesth Analg 99: 1159–1163CrossRefPubMedGoogle Scholar
  53. 53.
    Kennedy RR, French RA, Spencer C (2002) Predictive accuracy of a model of volatile anesthetic uptake. Anesth Analg 95: 1616–1621CrossRefPubMedGoogle Scholar
  54. 54.
    Kennedy RR (2005) The effect of using different values for the effect-site equilibrium half-time on the prediction of effect-site sevoflurane concentration: a simulation study. Anesth Analg 101: 1023–1028CrossRefPubMedGoogle Scholar
  55. 55.
    Kihara S, Yaguchi Y, Inomata S et al. (2003) Influence of nitrous oxide on minimum alveolar concentration of sevoflurane for laryngeal mask insertion in children. Anesthesiology 99: 1055–1058CrossRefPubMedGoogle Scholar
  56. 56.
    Kissin I (2000) Depth of anesthesia and bispectral index monitoring. Anesth Analg 90: 1114–1117CrossRefPubMedGoogle Scholar
  57. 57.
    Kreuer S, Bruhn J, Grundmann U et al. (2005) Comparison of 2 pharmacodynamic EEG models with and without a pharmacodynamic plateau. Eur J Anaesth 22 [Suppl 34]: A-100Google Scholar
  58. 58.
    Kreuer S, Wilhelm W (2006) The Narcotrend Monitor. Best Pract Res Clin Anaesthesiol 20: 111–119CrossRefPubMedGoogle Scholar
  59. 59.
    Kreuer S, Bialas P, Bruhn J et al. (2005) Application of bispectral and narcotrend indices to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 103: A820Google Scholar
  60. 60.
    Kreuer S, Biedler A, Larsen R et al. (2003) Narcotrend monitoring allows faster emergence and a reduction of drug consumption in propofol-remifentanil anesthesia. Anesthesiology 99: 34–41CrossRefPubMedGoogle Scholar
  61. 61.
    Kreuer S, Bruhn J, Biedler A et al. (2005) Dose-response relationship between sevoflurane concentrations and Narcotrend or bispectral index. Eur J Anaesth 22 [Suppl 34]: A-119Google Scholar
  62. 62.
    Kreuer S, Bruhn J, Biedler S et al. (2006) ke0 values for propofol using different PK/PD data sets. Eur J Anaesth 23 [Suppl 37]: A-120Google Scholar
  63. 63.
    Kreuer S, Bruhn J, Buchinger H et al. (2005) Dose-response relationship between sevoflurane concentrations and Narcotrend index. Anesthesiology 103: A823Google Scholar
  64. 64.
    Kreuer S, Bruhn J, Larsen R et al. (2004) Comparison of BIS and AAI as measures of anaesthetic drug effect during desflurane-remifentanil anaesthesia. Acta Anaesthesiol Scand 48: 1168–1173CrossRefPubMedGoogle Scholar
  65. 65.
    Kreuer S, Bruhn J, Larsen R et al. (2004) Application of Narcotrend index and bispectral index to the measurement of the EEG effects of isoflurane with and without burst suppression. Anesthesiology 101: 847–854CrossRefPubMedGoogle Scholar
  66. 66.
    Kreuer S, Bruhn J, Larsen R et al. (2005) Pharmakodynamisches Plateau im prozessierten EEG bei Sevofluran-Anästhesien. Wissenschaftliche Arbeitstage der DGAI, WürzburgGoogle Scholar
  67. 67.
    Kreuer S, Wilhelm W, Grundmann U et al. (2004) Narcotrend index vs. bispectral index as EEG measures of anesthetic drug effect during propofol anesthesia. Anesth Analg 98: 692–697CrossRefPubMedGoogle Scholar
  68. 68.
    Lang E, Kapila A, Shlugman D et al. (1996) Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology 85: 721–728CrossRefPubMedGoogle Scholar
  69. 69.
    LeDez KM, Lerman J (1987) The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology 67: 301–307CrossRefPubMedGoogle Scholar
  70. 70.
    Lerman J, Gregory GA, Eger EI 2nd (1984) Hematocrit and the solubility of volatile anesthetics in blood. Anesth Analg 63: 911–914CrossRefPubMedGoogle Scholar
  71. 71.
    Lerman J, Schmitt-Bantel BI, Gregory GA et al. (1986) Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology 65: 307–311CrossRefPubMedGoogle Scholar
  72. 72.
    Lerman J, Willis MM, Gregory GA, Eger EI 2nd (1983) Osmolarity determines the solubility of anesthetics in aqueous solutions at 37 degrees C. Anesthesiology 59: 554–558PubMedGoogle Scholar
  73. 73.
    Lerou JG, Dirksen R, Beneken Kolmer HH et al. (1991) A system model for closed-circuit inhalation anesthesia. II. Clinical validation. Anesthesiology 75: 230–237CrossRefPubMedGoogle Scholar
  74. 74.
    Lerou JG, Dirksen R, Beneken Kolmer HH, Booij LH (1991) A system model for closed-circuit inhalation anesthesia. I. Computer study. Anesthesiology 75: 345–355CrossRefPubMedGoogle Scholar
  75. 75.
    Lerou JG (2004) Nomogram to estimate age-related MAC. Br J Anaesth 93: 288–291CrossRefPubMedGoogle Scholar
  76. 76.
    Levitt DG (2002) PKQuest: volatile solutes – application to enflurane, nitrous oxide, halothane, methoxyflurane and toluene pharmacokinetics. BMC Anesthesiology 2: 5CrossRefPubMedGoogle Scholar
  77. 77.
    Locher S, Stadler KS, Boehlen T et al. (2004) A new closed-loop control system for isoflurane using bispectral index outperforms manual control. Anesthesiology 101: 591–602CrossRefPubMedGoogle Scholar
  78. 78.
    Lockwood GG, Sapsed-Byrne SM, Smith MA (1997) Effect of temperature on the solubility of desflurane, sevoflurane, enflurane and halothane in blood. Br J Anaesth 79: 517–520PubMedGoogle Scholar
  79. 79.
    Loomis AL, Harvey EN, Hobart CA (1937) Cerebral states during sleep as studied by human brain potentials. J Exp Psychol 21: 127–144CrossRefGoogle Scholar
  80. 80.
    Malviya S, Lerman J (1990) The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology 72: 793–796PubMedGoogle Scholar
  81. 81.
    Mapleson WW (1996) Effect of age on MAC in humans: a meta-analysis. Br J Anaesth 76: 179–185PubMedGoogle Scholar
  82. 82.
    Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67: 41–48PubMedGoogle Scholar
  83. 83.
    McEwan AI, Smith C, Dyar O et al. (1993) Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology 78: 864–869CrossRefPubMedGoogle Scholar
  84. 84.
    McKay ID, Voss LJ, Sleigh JW et al. (2006) Pharmacokinetic-pharmacodynamic modeling the hypnotic effect of sevoflurane using the spectral entropy of the electroencephalogram. Anesth Analg 102: 91–97CrossRefPubMedGoogle Scholar
  85. 85.
    Nakajima R, Nakajima Y, Ikeda K (1993) Minimum alveolar concentration of sevoflurane in elderly patients. Br J Anaesth 70: 273–275CrossRefPubMedGoogle Scholar
  86. 86.
    Nickalls RW, Mapleson WW (2003) Age-related iso-MAC charts for isoflurane, sevoflurane and desflurane in man. Br J Anaesth 91: 170–174CrossRefPubMedGoogle Scholar
  87. 87.
    Olofsen E, Dahan A (1999) The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram. Anesthesiology 90: 1345–1353CrossRefPubMedGoogle Scholar
  88. 88.
    Olofsen E, Sleigh JW, Dahan A (2002) The influence of remifentanil on the dynamic relationship between sevoflurane and surrogate anesthetic effect measures derived from the EEG. Anesthesiology 96: 555–564CrossRefPubMedGoogle Scholar
  89. 89.
    Rampil IJ, Lockhart SH, Zwass MS et al. (1991) Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 74: 429–433PubMedGoogle Scholar
  90. 90.
    Rampil IJ, Mason P, Singh H (1993) Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78: 707–712CrossRefPubMedGoogle Scholar
  91. 91.
    Rampil IJ (1994) Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 80: 606–610CrossRefPubMedGoogle Scholar
  92. 92.
    Rampil IJ (1998) A primer for electroencephalogram signal processing in anesthesia. Anesthesiology 89: 980–1002CrossRefPubMedGoogle Scholar
  93. 93.
    Rehberg B, Bouillon T, Zinserling J, Hoeft A (1999) Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 91: 397–405CrossRefPubMedGoogle Scholar
  94. 94.
    Rietbrock S, Wissing H, Kuhn I, Fuhr U (2000) Pharmacokinetics of inhaled anaesthetics in a clinical setting: description of a novel method based on routine monitoring data. Br J Anaesth 84: 437–442PubMedGoogle Scholar
  95. 95.
    Roizen MF, Horrigan RW, Frazer BM (1981) Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision – MAC BAR. Anesthesiology 54: 390–398CrossRefPubMedGoogle Scholar
  96. 96.
    Ropcke H, Konen-Bergmann M, Cuhls M et al. (2001) Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth 13: 198–207CrossRefPubMedGoogle Scholar
  97. 97.
    Ropcke H, Lier H, Hoeft A, Schwilden H (1999) Isoflurane, nitrous oxide, and fentanyl pharmacodynamic interactions in surgical patients as measured by effects on median power frequency. J Clin Anesth 11: 555–562CrossRefPubMedGoogle Scholar
  98. 98.
    Ropcke H, Schwilden H (1996) Die Interaktion von Stickoxidul und Enfluran bei einem EEG-Median von 2–3 Hz ist additiv, aber schwacher als bei 1,0 MAC. Anaesthesist 45: 819–825CrossRefPubMedGoogle Scholar
  99. 99.
    Ropcke H, Schwilden H (1996) Interaction of isoflurane and nitrous oxide combinations similar for median electroencephalographic frequency and clinical anesthesia. Anesthesiology 84: 782–788CrossRefPubMedGoogle Scholar
  100. 100.
    Ropcke H, Wirz S, Bouillon T et al. (2001) Pharmacodynamic interaction of nitrous oxide with sevoflurane, desflurane, isoflurane and enflurane in surgical patients: measurements by effects on EEG median power frequency. Eur J Anaesthesiol 18: 440–449CrossRefPubMedGoogle Scholar
  101. 101.
    Russell GB, Snider MT, Richard RB, Loomis JL (1990) Hyperbaric nitrous oxide as a sole anesthetic agent in humans. Anesth Analg 70: 289–295CrossRefPubMedGoogle Scholar
  102. 102.
    Saidman LJ, Eger EI (1964) Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25: 302–306CrossRefPubMedGoogle Scholar
  103. 103.
    Scheller MS, Saidman LJ, Partridge BL (1988) MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anaesth 35: 153–156PubMedGoogle Scholar
  104. 104.
    Schmidt GN, Bischoff P, Standl T et al. (2002) Narcotrend, bispectral index, and classical electroencephalogram variables during emergence from propofol/remifentanil anesthesia. Anesth Analg 95: 1324–1330CrossRefPubMedGoogle Scholar
  105. 105.
    Schnider TW, Minto CF, Gambus PL et al. (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88: 1170–1182CrossRefPubMedGoogle Scholar
  106. 106.
    Schultz B, Kreuer S, Wilhelm W et al. (2003) The Narcotrend monitor. Development and interpretation algorithms. Anaesthesist 52: 1143–1148CrossRefPubMedGoogle Scholar
  107. 107.
    Schwilden H, Ropcke H, Drosler S (1995) Die klinische Potenz von Stickoxidul – Ist MAC der Goldstandard? Anasthesiol Intensivmed Notfallmed Schmerzther 30: 337–340PubMedGoogle Scholar
  108. 108.
    Schwilden H, Schüttler J, Stoeckel H (1987) Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 67: 341–347CrossRefPubMedGoogle Scholar
  109. 109.
    Schwilden H, Stoeckel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59: 738–745CrossRefPubMedGoogle Scholar
  110. 110.
    Shafer SL (2004) Pharmacokinetic and pharmacodynamic analysis with NONMEM – basic concepts. Workshop, Palo Alto, California, USA, 9.17Google Scholar
  111. 111.
    Smith WD, Dutton RC, Smith NT (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84: 38–51CrossRefPubMedGoogle Scholar
  112. 112.
    Stevens WD, Dolan WM, Gibbons RT et al. (1975) Minimum alveolar concentrations (MAC) of isoflurande with and without nitrous oxide in patients of various ages. Anesthesiology 42: 197–200PubMedGoogle Scholar
  113. 113.
    Strum DP, Eger EI 2nd (1987) Partition coefficients for sevoflurane in human blood, saline, and olive oil. Anesth Analg 66: 654–656PubMedGoogle Scholar
  114. 114.
    Swan HD, Crawford MW, Pua HL et al. (1999) Additive contribution of nitrous oxide to sevoflurane minimum alveolar concentration for tracheal intubation in children. Anesthesiology 91: 667–671CrossRefPubMedGoogle Scholar
  115. 115.
    Taheri S, Eger EI 2nd (1999) A demonstration of the concentration and second gas effects in humans anesthetized with nitrous oxide and desflurane. Anesth Analg 89: 774–780CrossRefPubMedGoogle Scholar
  116. 116.
    Torri G, Damia G, Fabiani ML (1974) Effect on nitrous oxide on the anaesthetic requirement of enflurane. Br J Anaesth 46: 468–472CrossRefPubMedGoogle Scholar
  117. 117.
    Wadhwa A, Durrani J, Sengupta P et al. (2003) Women have the same desflurane minimum alveolar concentration as men: a prospective study. Anesthesiology 99: 1062–1065CrossRefPubMedGoogle Scholar
  118. 118.
    Westmoreland CL, Sebel PS, Gropper A (1994) Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg 78: 23–28CrossRefPubMedGoogle Scholar
  119. 119.
    Wilhelm W, Kreuer S (2003) Das interpretierte EEG als Überwachungsverfahren in der Anästhesiologie. Anasthesiol Intensivmed 44: 8–15Google Scholar
  120. 120.
    Yasuda N, Lockhart SH, Eger EI 2nd et al. (1991) Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 74: 489–498CrossRefPubMedGoogle Scholar
  121. 121.
    Yasuda N, Lockhart SH, Eger EI 2nd et al. (1991) Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 72: 316–324CrossRefPubMedGoogle Scholar
  122. 122.
    Yasuda N, Targ AG, Eger EI et al. (1990) Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesth Analg 71: 340–348CrossRefPubMedGoogle Scholar
  123. 123.
    Yasuda N, Targ AG, Eger El (1989) Solubility if I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 69: 370–373CrossRefPubMedGoogle Scholar
  124. 124.
    Yasuda N, Weiskopf RB, Cahalan MK et al. (1991) Does desflurane modify circulatory responses to stimulation in humans? Anesth Analg. 73: 175–179Google Scholar
  125. 125.
    Zbinden AM, Maggiorini M, Petersen-Felix S et al. (1994) Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I. Motor reactions. Anesthesiology 80: 253–260PubMedGoogle Scholar
  126. 126.
    Zhou JX, Liu J (2001) The effect of temperature on solubility of volatile anesthetics in human tissues. Anesth Analg 93: 234–238CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie, Intensivmedizin und SchmerztherapieUniversitätsklinikum des SaarlandesHomburg/SaarDeutschland
  2. 2.Department of AnaesthesiologyUMC St. RadboudNijmegenNiederlande
  3. 3.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum St.-Marien-HospitalLünenDeutschland
  4. 4.Klinik und Poliklinik für AnästhesiologieInselspitalBernSchweiz

Personalised recommendations