Der Anaesthesist

, Volume 56, Issue 1, pp 95–108 | Cite as

Koagulopathie

Bedeutung beim polytraumatisierten Patienten und aktuelle Aspekte der Gerinnungstherapie
CME Weiterbildung • Zertifizierte Fortbildung

Zusammenfassung

Gerinnungsstörungen zählen zu den häufigsten Ursachen posttraumatischer Exsanguinationen, die mit einer Letalität von bis zu 40% assoziiert sind. Da die Massenblutung auf dem Boden einer Koagulopathie potenziell vermeidbar ist, gilt das Verbluten als die häufigste vermeidbare Komplikation, die zum Versterben nach Trauma führt. Die Koagulopathie ist oft multifaktoriell und wird u. a. durch den blutungsbedingten Verlust bzw. die Dilution der Gerinnungsfaktoren und Thrombozyten verursacht. Das gleichzeitige Vorliegen einer Azidose, Hypothermie und Koagulopathie wird aufgrund der damit assoziierten hohen Letalität oft auch als „lethal triad“ bezeichnet. Zur Behandlung einer manifesten Koagulopathie wird zumeist eine empirische Therapie mit hämostatisch wirksamen Blutprodukten eingeleitet. Allerdings ist die Transfusion von Erythrozytenkonzentraten komplikationsbehaftet, da sie mit postoperativen Infektionen und Multiorganversagen assoziiert ist. Beim Management der Massenblutung ist daher eine klare Strategie zur Verhinderung einer Koagulopathie bzw. zur Wiederherstellung des hämostatischen Gleichgewichts erforderlich, um ein Ausbluten des Patienten zu verhindern und die Notwendigkeit zur Transfusion mit Erythrozyten zu minimieren.

Schlüsselwörter

Polytrauma Hämostasis Koagulopathie Massenblutung 

Coagulopathy in multiple trauma: new aspects of therapy

Abstract

Coagulopathy after trauma is a major cause for uncontrolled hemorrhage in trauma vicitims. Approximately 40% of trauma related deaths are attributed to or caused by exsanguination. Therefore the prevention of coagulopathy is regarded as the leading cause of avoidable death in these patients. Massive hemorrhage after trauma is usually caused by a combination of surgical and coagulopathic bleeding. Coagulopathic bleeding is multifactorial, including dilution and consumption of both platelets and coagulation factors, as well as dysfunction of the coagulation system. Because of the high mortality associated with hypothermia, acidosis and progressive coagulopathy, this vicious circle is often referred to as the lethal triad, potentially leading to exsanguination. To overcome this coagulopahty-related bleeding an empiric therapy is often instituted by replacing blood components. However, the use of transfusion of red blood cells has been shown to be associated with post-injury infection and multiple organ failure. In the management of mass bleeding it is therefore crucial to have a clear strategy to prevent coagulopathy and to minimize the need for blood transfusion.

Keywords

Polytrauma Haemostasis Coagulopathy Mass bleeding 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Ahonen J, Jokela R (2005) Recombinant factor VIIa for life-threatening post-partum haemorrhage. Br J Anaesth 94: 592–595CrossRefPubMedGoogle Scholar
  2. 2.
    Armand R, Hess JR (2003) Treating coagulopathy in trauma patients. Transfus Med Rev 17: 223–231CrossRefPubMedGoogle Scholar
  3. 3.
    Barrowcliffe TW, Cattaneo M, Podda GM et al. (2006) New approaches for measuring coagulation. Haemophilia 12: 76–81CrossRefPubMedGoogle Scholar
  4. 4.
    Boffard KD, Riou B, Warren B et al.; NovoSeven Trauma Study Group (2005) Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 5: 8–15Google Scholar
  5. 5.
    Carless PA, Henry DA, Moxey AJ et al. (2004) Desmopressin for minimising perioperative allogeneic blood transfusion. Cochrane Database 1: CD001884Google Scholar
  6. 6.
    Ciavarella D, Reed RL, Counts RB et al. (1987) Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol 67: 365–368PubMedGoogle Scholar
  7. 7.
    Claridge JA, Sawyer RG, Schulman AM et al. (2002) Blood transfusions correlate with infections in trauma patients in a dose-dependent manner. Am Surg 68: 566–572PubMedGoogle Scholar
  8. 8.
    Cosgriff N, Moore EE, Sauaia A et al. (1997) Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma 42: 857–861PubMedGoogle Scholar
  9. 9.
    Dietrich W, Spath P, Ebell A, Richter JA (1997) Prevalence of anaphylactic reactions to aprotinin: analysis of two hundred forty-eight reexposures to aprotinin in heart operations. J Thorac Cardiovasc Surg 113: 194–201CrossRefPubMedGoogle Scholar
  10. 10.
    Dzik WH (2004) Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep 3: 324–330PubMedGoogle Scholar
  11. 11.
    Engelman DT, Gabram SG, Allen L et al. (1996) Hypercoagulability following multiple trauma. World J Surg 20: 5–10CrossRefPubMedGoogle Scholar
  12. 12.
    Enomoto TM, Thorborg P (2005) Emerging off-label uses for recombinant activated factor VII: grading the evidence. Crit Care Clin 21: 611–632CrossRefPubMedGoogle Scholar
  13. 13.
    Erber WN (2002) Massive blood transfusion in the elective surgical setting. Transfus Apher Sci 27: 83–92CrossRefPubMedGoogle Scholar
  14. 14.
    Fries D, Krismer A, Klingler A et al. (2005) Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth 95: 172–177CrossRefPubMedGoogle Scholar
  15. 15.
    Gubler KD, Gentilello LM, Hassantash SA, Maier RV (1994) The impact of hypothermia on dilutional coagulopathy. J Trauma 36: 847–851PubMedGoogle Scholar
  16. 16.
    Heddle NM (1999) Pathophysiology of febrile nonhemolytic transfusion reactions. Curr Opin Hematol 6: 420–426CrossRefPubMedGoogle Scholar
  17. 17.
    Henry DA, Moxey AJ, Carless PA et al. (2001) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database 1: CD001886PubMedGoogle Scholar
  18. 18.
    Hiippala S (1998) Replacement of massive blood. Vox Sang 74: 399–407PubMedGoogle Scholar
  19. 19.
    Hoffman M, Monroe DM (2001) A cell-based model of hemostasis. Thromb Haemost 85: 958–966PubMedGoogle Scholar
  20. 20.
    Hoyt DB (2004) A clinical review of bleeding dilemmas in trauma. Semin Hematol 41: 40–43CrossRefPubMedGoogle Scholar
  21. 21.
    Lynn M, Jeroukhimov I, Klein Y, Martinowitz U (2002) Updates in the management of severe coagulopathy in trauma patients. Intensive Care Med 28: 241–247CrossRefGoogle Scholar
  22. 22.
    Mahdy AM, Webster NR (2004) Perioperative systemic haemostatic agents. Br J Anaesth 93: 842–858CrossRefPubMedGoogle Scholar
  23. 23.
    Mangano DT, Tudor IC, Dietzel C; Multicenter Study of Perioperative Ischemia Research Group Ischemia Research and Education Foundation (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354: 353–365CrossRefPubMedGoogle Scholar
  24. 24.
    Mannucci PM (2004) Treatment of von Willebrand’s disease. N Engl J Med 351: 683–694CrossRefPubMedGoogle Scholar
  25. 25.
    Martinowitz U, Michaelson M; The Israeli Multidisciplinary rFVIIa Task Force (2005) Guidelines for the use of recombinant activated factor VII (rFVIIa) in uncontrolled bleeding: a report by the Israeli Multidisciplinary rFVIIa Task Force. J Thromb Haemost 3: 640–648CrossRefPubMedGoogle Scholar
  26. 26.
    Meng ZH, Wolberg AS, Monroe DM, Hoffman M (2003) The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 55: 886–891PubMedGoogle Scholar
  27. 27.
    Moore FA, Moore EE, Sauaia A (1997) An independent risk factor for postinjury multiple organ failure. Arch Surg 132: 620–624PubMedGoogle Scholar
  28. 28.
    Murray CJ, Lopez AD (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349: 1269–1276CrossRefPubMedGoogle Scholar
  29. 29.
    Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349: 1498–1504CrossRefPubMedGoogle Scholar
  30. 30.
    Peden M, McGee K, Sharma G (2002) The injury chart book; a graphical overview of the global burden of injuries. World Health Organisation, GenevaGoogle Scholar
  31. 31.
    Peng RY, Bongard FS (1999) Hypothermia in trauma patients. J Am Coll Surg 188: 685–696CrossRefPubMedGoogle Scholar
  32. 32.
    Pomper GJ, Wu Y (2003) Risks of transfusion-transmitted infections: 2003. Curr Opin Hematol 10: 412–418CrossRefPubMedGoogle Scholar
  33. 33.
    Rossaint R, Cerny V, Coats TJ et al. (2006) Key issues in advanced bleeding care in trauma. Shock 26: 322–331CrossRefPubMedGoogle Scholar
  34. 34.
    Rouger P, Noizat-Pirenne F, Le Pennec PY (2000) Haemovigilance and transfusion safety in France. Vox Sang 78: 287–289PubMedGoogle Scholar
  35. 35.
    Schreiber MA (2004) Damage control surgery. Crit Care Clin 20: 101–118CrossRefPubMedGoogle Scholar
  36. 36.
    Schroeder ML (2002) Transfusion-associated graft-versus-host disease. Br J Haematol 117: 275–287CrossRefPubMedGoogle Scholar
  37. 37.
    Spahn DR, Rossaint R (2005) Coagulopathy and blood component transfusion in trauma. Br J Anaesth 95: 130–139CrossRefPubMedGoogle Scholar
  38. 38.
    Stainsby D, MacLennan S, Hamilton PJ (2000) Management of massive blood loss: a template guideline. Br J Anaesth 85: 487–491PubMedGoogle Scholar
  39. 39.
    Stanworth SJ, Brunskill SJ, Hyde CJ et al. (2004) Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials. Br J Haematol 126: 139–152CrossRefPubMedGoogle Scholar
  40. 40.
    Vincent JL, Rossaint R, Riou B et al. (2006) Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding – a European perspective. Crit Care 10: R120CrossRefPubMedGoogle Scholar
  41. 41.
    Wolberg AS, Meng ZH, Monroe DM, Hoffman M (2004) A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma 56: 1221–1228PubMedGoogle Scholar
  42. 42.
    Yoshihara H, Yamamoto T, Mihara H (1985) Changes in coagulation and fibrinolysis occurring in dogs during hypothermia. Thromb Res 37: 503–512CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • O. Grottke
    • 1
  • D. Henzler
    • 1
  • D.R. Spahn
    • 2
  • R. Rossaint
    • 1
  1. 1.Klinik für AnästhesiologieUniversitätklinikumAachenDeutschland
  2. 2.Institut für AnästhesiologieUniversitätsspitalZürichSchweiz

Personalised recommendations