Der Anaesthesist

, Volume 55, Issue 11, pp 1142–1156

Perioperative Anämietoleranz

Mechanismen, Einflussfaktoren, Grenzen
  • O. Habler
  • J. Meier
  • A. Pape
  • H. Kertscho
  • B. Zwißler
Leitthema

Zusammenfassung

Die zu erwartende Kostensteigerung im Transfusionswesen (steigender Fremdblutbedarf bei gleichzeitig rückläufiger Spendebereitschaft, Behandlungspflicht transfusionsassoziierter Folgeerkrankungen) erhöht den sozioökonomischen Stellenwert der Entwicklung institutionsspezifischer Transfusionsprogramme. Ein wesentlicher Bestandteil hierbei ist – neben einer schonenden Operationstechnik und der konsequenten perioperativen Anwendung fremdblutsparender Maßnahmen – die Ausschöpfung der natürlicherweise vorhandenen „Anämietoleranz“ des menschlichen Organismus (Toleranz größerer Blutverluste durch Verlust von „verdünntem“ Blut, Hinauszögern des Transfusionsbeginns bis nach chirurgischer Blutstillung, Gewinnung von autologem Blut). In der vorliegenden Übersicht werden die Mechanismen, Einflussgrößen und Grenzen dieser natürlichen Anämietoleranz für den Gesamtorganismus und für einzelne Organsysteme zusammengefasst und die sich daraus ergebende Indikation zur Erythrozytentransfusion abgeleitet. Unter kontrollierten Bedingungen (Narkose, strikte Aufrechterhaltung von Normovolämie, komplette Muskelrelaxierung, Hyperoxämie, Hypothermie) werden von kardiopulmonal gesunden Individuen kurzzeitig auch extreme Grade der Verdünnungsanämie [Hämoglobin- (Hb-)Wert <3 g/dl (<1,86 mmol/l)] ohne Transfusion toleriert. In der klinischen Routine bleibt diese Situation – nicht zuletzt in Ermangelung eines adäquaten Monitorings – jedoch auf spezielle Sonderfälle beschränkt (z. B. unerwartete große Blutverluste bei Zeugen Jehovahs, unerwarteter Engpass bei der Bereitstellung von Fremdblut). Die derzeit geltenden Empfehlungen verschiedener Expertenkommissionen decken sich dahingehend, dass perioperativ (1) bis zu einer Hb-Konzentration von 10 g/dl (6,21 mmol/l) auch bei alten Patienten und Patienten mit kardiopulmonalen Begleiterkrankungen eine Transfusion von Erythrozyten in der Regel nicht notwendig ist und (2) eine Transfusion bei jungen, gesunden Patienten ohne kardiopulmonale Vorerkrankungen (einschließlich Schwangeren und Kindern) erst ab einer Hb-Konzentration von <6 g/dl (<3,72 mmol/l) notwendig wird. Auch beatmete Intensivpatienten mit Polytrauma und Sepsis scheinen nicht von einer Transfusion auf Hb-Konzentration >9 g/dl (>5,59 mmol/l) zu profitieren. Bei massiven Blutverlusten und diffuser Blutungsneigung scheint ein Hb von 10 g/dl (6,21 mmol/l) zur Stabilisierung der Blutgerinnung beizutragen.

Schlüsselwörter

Perioperative Anämie Anämietoleranz Fremdbluttransfusion Transfusionstrigger 

Tolerance to perioperative anemia

Mechanisms, influencing factors and limits

Abstract

The expected cost explosion in transfusion medicine (increasing imbalance between donors and potential recipients, treatment of transfusion-associated complications) increases the socio-economic significance of specific institutional transfusion programs. In this context the estimated use of the patient’s physiologic tolerance to anemia enables 1) the tolerance of larger blood losses (loss of “diluted blood”), 2) the onset of transfusion to the time after surgical control of bleeding to be delayed and 3) the perioperative collection of autologous red blood cells. The present review article summarizes the mechanisms, influencing factors and limits of this natural tolerance to anemia and deduces the indication for perioperative red blood cell transfusion. Under strictly controlled conditions (anesthesia, normovolemia, complete muscular relaxation, hyperoxemia, mild hypothermia) extremely low hemoglobin concentrations [Hb <3 g/dl (<1.86 mmol/l)] are tolerated without transfusion by individuals with no cardiopulmonary disease. In the clinical routine these situations are limited to borderline situations e.g. unexpected massive blood losses in Jehovah’s Witnesses or unexpected shortcomings in blood supply. The current recommendations coincide to the effect that perioperative red blood cell transfusion 1) is unnecessary up to a Hb concentration of 10 g/dl (6.21 mmol/l) even in older patients with cardiopulmonary comorbidity and 2) is only recommended in cases of Hb <6 g/dl (<3.72 mmol/l) in otherwise healthy subjects including pregnant women and children. Critically ill patients with multiple trauma and sepsis do not seem to benefit from transfusions up to Hb concentrations >9 g/dl (>5.59 mmol/l). In cases of massive hemorrhaging and diffuse bleeding disorders the maintenance of a Hb concentration of 10 g/dl (6.21 mmol/l) seems to contribute to stabilization of coagulation.

Keywords

Perioperative anemia Anemia tolerance Allogeneic transfusion Transfusion trigger 

Literatur

  1. 1.
    Aly Hassan A, Lochbuehler H, Frey L, Messmer K (1997) Global tissue oxygenation during normovolaemic haemodilution in young children. Paediatr Anaesth 7: 197–204CrossRefPubMedGoogle Scholar
  2. 2.
    ASA Task Force on Blood Component Therapy (1996) Practice guidelines for blood component therapy. Anesthesiology 84: 732–747PubMedGoogle Scholar
  3. 3.
    Bakker J, Coffernils M, Leon M et al. (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99: 956–962PubMedGoogle Scholar
  4. 4.
    Bernek S, Biscoping J (2006) Risiken und Alternativen der Transfusion. Anaesthesiol Intensivmed 47: 143–155Google Scholar
  5. 5.
    Bommel J van, Trouwborst A, Schwarte L et al. (2002) Intestinal and cerebral oxygenation during severe isovolemic hemodilution and subsequent hyperoxic ventilation in a pig model. Anesthesiology 97: 660–670CrossRefPubMedGoogle Scholar
  6. 6.
    Bryson GL, Laupacis A, Wells GA, for the International Study of Perioperative Transfusion (1998) Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. Anesth Analg 86: 9–15CrossRefPubMedGoogle Scholar
  7. 7.
    Busch ORC, Hop WCJ, Hoynck van Papendrecht MAW et al. (1993) Blood transfusion and prognosis in colorectal cancer. N Engl J Med 328: 1372–1376CrossRefPubMedGoogle Scholar
  8. 8.
    Cain SM (1977) Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 42: 228–234PubMedGoogle Scholar
  9. 9.
    Carson JL, Duff A, Poses RM et al. (1996) Effect of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet 348: 1055–1060CrossRefPubMedGoogle Scholar
  10. 10.
    Carson JL, Duff A, Berlin JA et al. (1998) Perioperative blood transfusion and postoperative mortality. JAMA 279: 199–205CrossRefPubMedGoogle Scholar
  11. 11.
    Carson JL, Noveck H, Berlin JA, Gould SA (2002) Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion. Transfusion 42: 812–818CrossRefPubMedGoogle Scholar
  12. 12.
    College of American Pathologists (1998) Practice parameter for the use of red blood cell transfusions. Arch Pathol Lab Med 122: 130–138PubMedGoogle Scholar
  13. 13.
    Delpapa EH, Edelstone DI, Milley JR, Balsan M (1992) Effects of chronic maternal anemia on systemic and uteroplacental oxygenation in near-term pregnant sheep. Am J Obstet Gynecol 166: 1007–1012PubMedGoogle Scholar
  14. 14.
    Edelstone DI, Paulone ME, Maljovec JJ, Hagberg M (1987) Effects of maternal anemia on cardiac output, systemic oxygen consumption, and regional blood flow in pregnant sheep. Am J Obstet Gynecol 156: 740–748PubMedGoogle Scholar
  15. 15.
    Falke K, Bloos F (2005) The value of venous oximetry. Curr Opin Crit Care 11: 259–263CrossRefPubMedGoogle Scholar
  16. 16.
    Filho IPT, Spiess BD, Pittman RN et al. (2005) Experimental analysis of critical oxygen delivery. Am J Physiol 288: H1071–1079Google Scholar
  17. 17.
    Fontana JL, Welborn L, Mongan PD et al. (1995) Oxygen consumption and cardiovascular function in children during profound intraoperative normovolemic hemodilution. Anesth Analg 80: 219–225CrossRefPubMedGoogle Scholar
  18. 18.
    Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61: 455–464PubMedGoogle Scholar
  19. 19.
    Freischlag JA (2004) Intraoperative blood salvage in vascular surgery – Worth the effort? Crit Care Med 8 [Suppl 2]: S53–56Google Scholar
  20. 20.
    Galati A, Greco G, Goletta C et al. (1996) Usefulness of dipyridamole transesophageal echocardiography in the evaluation of myocardial ischemia and coronary artery flow. Int J Card Imaging 12: 169–178CrossRefPubMedGoogle Scholar
  21. 21.
    Geha AS, Baue AE (1978) Graded coronary stenosis and coronary flow during acute normovolemic anemia. World J Surg 2: 645–652CrossRefPubMedGoogle Scholar
  22. 22.
    Gianrossi R, Detrano R, Mulvihill D et al. (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80: 87–98PubMedGoogle Scholar
  23. 23.
    Gombotz H (2003) Physiologische Grenzen der Verdünnungsanämie bei Intensivpatienten. J Anaesth Intensivbehandl 1: 84–87Google Scholar
  24. 24.
    Goodnough LT, Shander A, Brecher ME (2003) Transfusion medicine: looking to the future. Lancet 361: 161–169CrossRefPubMedGoogle Scholar
  25. 25.
    Grange CS, Douglas J, Adams TJ, Wadsworth LD (1998) The use of acute hemodilution in parturients undergoing caesarean section. Am J Obstet Gynecol 178: 156–160CrossRefPubMedGoogle Scholar
  26. 26.
    Habler O, Kleen M, Podtschaske A et al. (1996) The effect of acute normovolemic hemodilution (ANH) on myocardial contractility in anesthetized dogs. Anesth Analg 83: 451–458CrossRefPubMedGoogle Scholar
  27. 27.
    Habler O, Kleen M, Hutter J et al. (1997) Effects of hemodilution on splanchnic perfusion and hepatorenal function. II. Renal perfusion and hepatorenal function. Eur J Med Res 2: 419–424PubMedGoogle Scholar
  28. 28.
    Habler OP, Kleen M, Hutter J et al. (1998) Iv perflubron emulsion versus autologous transfusion in severe normovolemic anemia: effects on left ventricular perfusion and function. Res Exp Med 197: 301–318CrossRefGoogle Scholar
  29. 29.
    Habler OP, Kleen MS, Hutter JW et al. (1998) Effects of hyperoxic ventilation on hemodilution-induced changes in anesthetized dogs. Transfusion 38: 135–144CrossRefPubMedGoogle Scholar
  30. 30.
    Habler OP, Kleen MS, Hutter JW et al. (1998) Hemodilution and iv perflubron emulsion as an alternative to blood transfusion: effects on tissue oxygenation during profound hemodilution in anesthetized dogs. Transfusion 38: 145–155CrossRefPubMedGoogle Scholar
  31. 31.
    Habler O, Kleen M, Podtschaske A et al. (2000) Akute normovolämische Hämodilution (ANH). Effekte der ANH auf die diastolische Funktion des linken Ventrikels. Anaesthesist 49: 939–948CrossRefPubMedGoogle Scholar
  32. 32.
    Habler O, Meier J, Pape A, Zwißler B (2004) Indikation zur Bluttransfusion bei orthopädischen Eingriffen. Orthopade 33: 774–783CrossRefPubMedGoogle Scholar
  33. 33.
    Habler O, Schwenzer K, Zimmer K et al. (2004) Effects of standardized acute normovolemic hemodilution on intraoperative allogeneic blood transfusion in patients undergoing major maxillofacial surgery. Int J Oral Maxillofac Surg 33: 467–475CrossRefPubMedGoogle Scholar
  34. 34.
    Habler O, Pape A, Meier J, Zwißler B (2005) Künstliche Sauerstoffträger als Alternative zur Bluttransfusion. Anaesthesist 54: 741–754CrossRefPubMedGoogle Scholar
  35. 35.
    Hagl S, Heimisch W, Meisner H et al. (1974) The effect of hemodilution on regional myocardial function in the presence of coronary stenosis. Basic Res Cardiol 72: 344–364CrossRefGoogle Scholar
  36. 36.
    Haisjackl M, Luz G, Sparr H et al. (1997) The effects of progressive anemia on jejunal mucosal and serosal tissue oxygenation in pigs. Anesth Analg 84: 538–544CrossRefPubMedGoogle Scholar
  37. 37.
    Hallowell P, Bland JHL, Chir B et al. (1972) Transfusion of fresh autologous blood in open-heart surgery. J Thorac Cardiovasc Surg 64: 941–948PubMedGoogle Scholar
  38. 38.
    Halm EA, Wang JJ, Bookvar K et al. (2003) Effects of blood transfusion on clinical and functional outcomes in patients with hip-fracture. Transfusion 43: 1358–1365CrossRefPubMedGoogle Scholar
  39. 39.
    Hansen E, Knuechel R, Altmeppen J, Taeger K (1999) Blood irradiation for intraoperative autotransfusion in cancer surgery: demonstration of efficient elimination of contaminating tumor cells. Transfusion 39: 608–615CrossRefPubMedGoogle Scholar
  40. 40.
    Hardy J-F, Moerloose P, Samama M (2004) Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anesth 51: 293–310PubMedGoogle Scholar
  41. 41.
    Hebert PC, Wells G, Blajchman MA et al. (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340: 409–417CrossRefPubMedGoogle Scholar
  42. 42.
    Hebert PC, Blajchman MA, Cook DJ et al. (2001) Do blood transfusions improve outcomes related to mechanical ventilation? Chest 119: 1850–1857CrossRefPubMedGoogle Scholar
  43. 43.
    Heiss MM, Mempel W, Jauch K-W et al. (1993) Beneficial effect of autologous blood transfusion on infectious complications after colorectal cancer surgery. Lancet 342: 1328–1333CrossRefPubMedGoogle Scholar
  44. 44.
    Horwich TB, Fonarow GC, Hamilton MA et al. (2002) Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J Am Coll Cardiol 39: 1780–1786CrossRefPubMedGoogle Scholar
  45. 45.
    Jan K-M, Chien S (1977) Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 2: H106–113Google Scholar
  46. 46.
    Johnson RG, Thurer RL, Kruskall MS et al. (1992) Comparison of two transfusion strategies after elective operations for myocardial revascularization. J Thorac Cardiovasc Surg 104: 307–314PubMedGoogle Scholar
  47. 47.
    Karger R, Kretschmer V, Wulf H (2004) Risiken der Transfusion von Blutkomponenten: aktuelle Anhaltszahlen für eine „quantitative“ Risikoaufklärung. Anaesthesiol Intensivmed 45: 430–434Google Scholar
  48. 48.
    Kemming GI, Meisner FG, Kleen M, Habler OP (2002) Calculation is unsuitable for determination of O2-consumption (VO2) in case of O2-supply-dependency. Eur J Med Res 7: 139–148PubMedGoogle Scholar
  49. 49.
    Kemming GI, Meisner FG, Kleen M et al. (2003) Hyperoxic ventilation at the critical hematocrit. Resuscitation 56: 289–297CrossRefPubMedGoogle Scholar
  50. 50.
    Kemming GI, Meisner FG, Kleen M et al. (2004) Hyperoxic ventilation in critical dilutional anemia: intestinal O2 transport and tissue oxygenation. Transfus Altern Transfus Med 5: 523–529Google Scholar
  51. 51.
    Kemming GI, Meisner FG, Meier J et al. (2004) Hyperoxic ventilation at the critical hematocrit: effects on myocardial perfusion and function. Acta Anaesth Scand 48: 951–959CrossRefPubMedGoogle Scholar
  52. 52.
    Kleen M, Habler O, Hutter J et al. (1996) Effects of hemodilution on gastric regional perfusion and intramucosal pH. Am J Physiol 271: H1849–1855PubMedGoogle Scholar
  53. 53.
    Kleen M, Habler O, Hutter J et al. (1997) Effects of hemodilution on splanchnic perfusion and hepatorenal function. Part I: splanchnic perfusion. Eur J Med Res 2: 413–418PubMedGoogle Scholar
  54. 54.
    Koch CG, Li L, Duncan AI et al. (2006) Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med 34: 1608–1616CrossRefPubMedGoogle Scholar
  55. 55.
    Leung JM, Weiskopf RB, Feiner J et al. (2000) Electrocardiographic ST-segment changes during acute, severe isovolemic hemodilution in humans. Anesthesiology 93: 1004–1010CrossRefPubMedGoogle Scholar
  56. 56.
    Levy PS, Kim SJ, Eckel PK et al. (1993) Limit to cardiac compensation during acute normovolemic hemodilution: influence of coronary stenosis. Am J Physiol 265: H340–349PubMedGoogle Scholar
  57. 57.
    Lichtenstein A, Eckhart WF, Swanson KJ et al. (1988) Unplanned intraoperative and postoperative hemodilution: oxygen transport and consumption during severe anemia. Anesthesiology 69: 119–122PubMedGoogle Scholar
  58. 58.
    Licker M, Ellenberger C, Murith N et al. (2004) Cardiovascular response to acute normovolemic haemodilution in patients with severe aortic stenosis: assessment with transoesophageal echocardiography. Anaesthesia 59: 1170–1177CrossRefPubMedGoogle Scholar
  59. 59.
    Licker M, Ellenberger C, Sierra C et al. (2005) Cardiovascular response to acute normovolemic hemodilution in patients with coronary artery disease: assessment with transoesophageal echocardiography. Crit Care Med 33: 591–597CrossRefPubMedGoogle Scholar
  60. 60.
    Licker M, Mariethoz E, Jorge Costa M, Morel D (2005) Cardioprotective effects of acute isovolemic hemodilution in a rat model of transient coronary occlusion. Crit Care Med 33: 2302–2308CrossRefPubMedGoogle Scholar
  61. 61.
    Lieberman JA, Weiskopf RB, Kelley SD et al. (2000) Critical oxygen delivery in conscious humans is less than 7.3 ml O2×kg−1×min−1. Anesthesiology 92: 407–413CrossRefPubMedGoogle Scholar
  62. 62.
    Linden P van der, Engelman E, Schmartz D, Vincent JL (1991) Effects of anesthetic agents on systemic critical O2 delivery. J Appl Physiol 71: 83–93PubMedGoogle Scholar
  63. 63.
    Linden P van der, Schmartz D, Groote F de et al. (1998) Critical hemoglobin concentration in anesthetized dogs: comparison of two plasma substitutes. Br J Anaesth 81: 556–562PubMedGoogle Scholar
  64. 64.
    Linden P van der, Schmartz D, Gilbart E et al. (2000) Effects of propofol, etomidate and pentobarbital on critical oxygen delivery. Crit Care Med 28: 2492–2499CrossRefPubMedGoogle Scholar
  65. 65.
    Linden P van der, Hert S de, Mathieu N et al. (2003) Tolerance to acute isovolemic hemodilution. Effect of anesthetic depth. Anesthesiology 99: 97–104CrossRefPubMedGoogle Scholar
  66. 66.
    Lipsic E, Horst ICC van der, Voors AA et al. (2005) Hemolobin levels and 30-day mortality in patients after myocardial infarction. Int J Cardiol 100: 289–292CrossRefPubMedGoogle Scholar
  67. 67.
    Marik PE, Sibbald WJ (1993) Effects of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269: 3024–3029CrossRefPubMedGoogle Scholar
  68. 68.
    Matot I, Scheinin O, Jurim O, Eid A (2002) Effectiveness of acute normovolemic hemodilution to minimize allogeneic blood transfusion in major liver resections. Anesthesiology 97: 794–800CrossRefPubMedGoogle Scholar
  69. 69.
    McIntyre L, Hebert PC, Wells G et al. (2004) Is a restrictive transfusion strategy safe for resuscitated and critically ill trauma patients? J Trauma 57: 563–568PubMedGoogle Scholar
  70. 70.
    Meier J, Wölkhammer S, Habler O (2003) The DeltaCrit system (DCS): a computer program for standardized bedside detection of critical oxygen delivery using the Deltatrac II™ metabolic monitor. Comp Biol Med 33: 395–405CrossRefGoogle Scholar
  71. 71.
    Meier J, Kemming GI, Kisch-Wedel H et al. (2004) Hyperoxic ventilation reduces 6-hour mortality at the critical hemoglobin concentration. Anesthesiology 100: 70–76CrossRefPubMedGoogle Scholar
  72. 72.
    Meier J, Pape A, Kleen M et al. (2005) Regional blood flow during hyperoxic haemodilution. Clin Physiol Funct Imaging 25: 158–165CrossRefPubMedGoogle Scholar
  73. 73.
    Meier J, Kemming G, Meisner F et al. (2005) Hyperoxic ventilation enables hemodilution beyond the critical myocardial hemoglobin concentration. Eur J Med Res 10: 462–468PubMedGoogle Scholar
  74. 74.
    Meier J, Pape A, Loniewska D et al. (2006) Einfluss von Noradrenalin auf die akute Anämietoleranz. Anaesthesiol Intensivmed (in press)Google Scholar
  75. 75.
    Meisner FG, Kemming GI, Habler OP et al. (2001) Diaspirin crosslinked hemoglobin enables extreme hemodilution beyond the critical hematocrit. Crit Care Med 29: 829–838CrossRefPubMedGoogle Scholar
  76. 76.
    Monk TG, Goodnough LT, Brecher ME et al. (1997) Acute normovolemic hemodilution can replace preoperative autologous blood donation as a standard of care for autologous blood procurement in radical prostatectomy. Anesth Analg 85: 953–958CrossRefPubMedGoogle Scholar
  77. 77.
    Morimoto Y, Mathru M, Martinez-Tica JF, Zornow MH (2001) Effects of profound anemia on brain tissue oxygen tension, carbon dioxide tension, and pH in rabbits. J Neurosurg Anesth 13: 33–39CrossRefGoogle Scholar
  78. 78.
    Morita Y, Chin-Yee I, Yu P et al. (2003) Critical oxygen delivery in conscious septic rats under stagnant of anemic hypoxia. Am J Respir Crit Care Med 167: 868–872CrossRefPubMedGoogle Scholar
  79. 79.
    Nöldge GFE, Priebe H-J, Geiger K (1992) Splanchnic hemodynamics and oxygen supply during acute normovolemic hemodilution alone and with isoflurane-induced hypotension in anesthetized pigs. Anesth Analg 75: 660–674PubMedGoogle Scholar
  80. 80.
    Olsfanger D, Fredman B, Goldstein B et al. (1997) Acute normovolemic haemodilution decreases postoperative allogeneic blood transfusion after total knee replacement. Br J Anaesth 79: 317–321PubMedGoogle Scholar
  81. 81.
    Palmieri TL, Caruso DM, Foster KN et al. (2006) Effect of blood transfusion on outcome after major burn injury: a multicenter study. Crit Care Med 34: 1602–1607CrossRefPubMedGoogle Scholar
  82. 82.
    Pape A, Meier J, Kertscho H et al. (2006) Hyperoxic ventilation increases the tolerance of acute normovolemic anemia in anesthetized pigs. Crit Care Med 34: 1475–1482CrossRefPubMedGoogle Scholar
  83. 83.
    Paulone ME, Edelstone DI, Shedd A (1987) Effects of maternal anemia on uteroplacental and fetal oxidative metabolism in sheep. Am J Obstet Gynecol 156: 230–237PubMedGoogle Scholar
  84. 84.
    Perez-de-Sa V, Roscher R, Cunha-Goncalves D et al. (2002) Mild hypothermia has minimal effects on the tolerance to severe progressive normovolemic anemia in swine. Anesthesiology 97: 1189–1197CrossRefPubMedGoogle Scholar
  85. 85.
    Pries AR, Fritzsche A, Ley K, Gaethgens P (1992) Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ Res 70: 1113–1121PubMedGoogle Scholar
  86. 86.
    Rao SV, Jollis JG, Harrington RA et al. (2004) Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA 292: 1555–1562CrossRefPubMedGoogle Scholar
  87. 87.
    Räsänen J (1992) Supply-dependent oxygen consumption and mixed venous oxyhemoglobin saturation during isovolemic hemodilution in pigs. Chest 101: 1121–1124PubMedGoogle Scholar
  88. 88.
    Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377CrossRefPubMedGoogle Scholar
  89. 89.
    Schaller RT, Schaller J, Furman EB (1984) The advantages of hemodilution anesthesia for major liver resection in children. J Pediatr Surg 19: 705–710PubMedGoogle Scholar
  90. 90.
    Schönhofer B, Böhrer H, Köhler D (1998) Blood transfusion facilitating difficult weaning from the ventilator. Anaesthesia 53: 169–191CrossRefPubMedGoogle Scholar
  91. 91.
    Schou H, Perez de Sa V, Sigurdardottir M et al. (1996) Circulatory effects of hypoxia, acute normovolemic hemodilution and their combination in anesthetized pigs. Anesthesiology 84: 1443–1454CrossRefPubMedGoogle Scholar
  92. 92.
    Schou H, Kongstad L, Perez de Sa V et al. (1998) Uncompensated blood loss is not tolerated during acute normovolemic hemodilution in anesthetized pigs. Anesth Analg 87: 786–794CrossRefPubMedGoogle Scholar
  93. 93.
    Segal JB, Blasco-Colmenares E, Norris EJ, Guallar E (2004) Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion 44: 632–644CrossRefPubMedGoogle Scholar
  94. 94.
    Simchon S, Chen RYZ, Carlin RD et al. (1986) Effects of blood viscosity on plasma renin activity and renal hemodynamics. Am J Physiol 250: F40–46PubMedGoogle Scholar
  95. 95.
    Smith MJ, Stiefel MF, Magge S et al. (2005) Packed red blood cell transfusion increases local cerebral oxygenation. Crit Care Med 33: 1104–1108CrossRefPubMedGoogle Scholar
  96. 96.
    Spahn DR, Zollinger A, Schlumpf RB et al. (1996) Hemodilution tolerance in elderly patients without known cardiac disease. Anesth Analg 82: 681–686CrossRefPubMedGoogle Scholar
  97. 97.
    Spahn DR, Schmid ER, Seifert B, Pasch T (1996) Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg 82: 687–694CrossRefPubMedGoogle Scholar
  98. 98.
    Spahn DR, Seifert B, Pasch T, Schmid ER (1998) Haemodilution tolerance in patients with mitral regurgitation. Anaesthesia 53: 20–24CrossRefGoogle Scholar
  99. 99.
    Spahn DR, Bremt R van, Theilmeier G et al., the European Perflubron Emulsion Study Group (1999) Perflubron emulsion delays blood transfusions in orthopedic surgery. Anesthesiology 91: 1195–1208CrossRefPubMedGoogle Scholar
  100. 100.
    Sunder-Plassmann L, Klövekorn WP, Holper K et al. (1971) The physiological significance of acutely induced hemodilution. Aalborg 1970. In: Ditzel J, Lewis D (eds) Proc. 6th Europ. Conf. Microcirculation. Karger, Basel, pp 23–28Google Scholar
  101. 101.
    Suttner S, Piper SN, Kumle B et al. (2004) The influence of allogeneic red blood cell transfusion compared with 100% oxygen ventilation on systemic oxygen transport and skeletal muscle oxygen tension after cardiac surgery. Anesth Analg 99: 2–11CrossRefPubMedGoogle Scholar
  102. 102.
    Teßmann R, Lüpke U von (1996) Überleben einer schwersten Blutungsanämie bei einer Zeugin Jehovas. Anasthesiol Intensivmed Notfallmed Schmerzther 31: 501–504PubMedGoogle Scholar
  103. 103.
    Toy P, Gajic O (2004) Transfusion-related acute lung injury. Anesth Analg 99: 1623–1624CrossRefPubMedGoogle Scholar
  104. 104.
    Trouwborst A, Tenbrinck R, Woerkens E van (1990) Blood gas analysis of mixed venous blood during normoxic acute isovolemic hemodilution in pigs. Anesth Analg 70: 523–529PubMedGoogle Scholar
  105. 105.
    Tsai AG, Cabrales P, Intaglietta M (2004) Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion 44: 1626–1634CrossRefPubMedGoogle Scholar
  106. 106.
    Vamvakas EC, Taswell HF (1994) Epidemiology of blood transfusion. Transfusion 34: 464–470CrossRefPubMedGoogle Scholar
  107. 107.
    Vernon D, Witte M (2000) Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med 28: 1569–1571CrossRefPubMedGoogle Scholar
  108. 108.
    Viele MK, Weiskopf RB (1994) What can we learn about the need for transfusion from patients who refuse blood? The experience with Jehovah’s Witnesses. Transfusion 34: 396–401CrossRefPubMedGoogle Scholar
  109. 109.
    Vincent JL, Baron J-F, Reinhart K et al. (2002) Anemia and blood transfusion in critically ill patients. JAMA 288: 1499–1507CrossRefPubMedGoogle Scholar
  110. 110.
    Vorstand und Wissenschaftlicher Beirat der Bundesärztekammer (2003) Erythrozytenkonzentrate – Anwendung, Dosierung, Art der Anwendung. Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten, 3. überarb. u. erw. Aufl. Deutscher Ärzteverlag, Köln, S 11–14Google Scholar
  111. 111.
    Weber EWC, Slappendel R, Prins MH et al. (2005) Perioperative blood transfusions and delayed wound healing after hip replacement surgery: effects on duration of hospitalization. Anesth Analg 100: 1416–1421CrossRefPubMedGoogle Scholar
  112. 112.
    Weiskopf RB, Kramer JH, Viele M et al. (2000) Acute severe isovolemic anemia impairs cognitive function and memory in humans. Anesthesiology 92: 1646–1652CrossRefPubMedGoogle Scholar
  113. 113.
    Weiskopf RB, Feiner J, Hopf HW et al. (2002) Oxygen reverses deficits of cognitive function and memory and increased heart rate induced by acute severe isovolemic anemia. Anesthesiology 96: 871–877CrossRefPubMedGoogle Scholar
  114. 114.
    Weiskopf RB, Aminoff MJ, Hopf HW et al. (2003) Acute isovolemic anemia does not impair peripheral or central nerve conduction. Anesthesiology 99: 546–551CrossRefPubMedGoogle Scholar
  115. 115.
    Weiskopf RB, Feiner J, Hopf H et al. (2003) Heart rate increases linearly in response to acute isovolemic anemia. Transfusion 43: 235–240CrossRefPubMedGoogle Scholar
  116. 116.
    Weiskopf RB, Toy P, Hopf HW et al. (2005) Acute isovolemic anemia impairs central processing as determined by P300 latency. Clin Neurophysiol 116: 1028–1032CrossRefPubMedGoogle Scholar
  117. 117.
    Weiskopf RB, Feiner J, Hopf H (2006) Fresh blood and aged stored blood are equally efficacious in immediately reversing anemia-induced brain oxygenation deficits in humans. Anesthesiology (in press)Google Scholar
  118. 118.
    Woerkens ECSM van, Trouwborst A, Van Lanschot JJB (1992) Profound hemodilution: what is the critical level of hemodilution at which oxygen delivery-dependent oxygen consumption starts in an anesthetized human. Anesth Analg 75: 818–821PubMedGoogle Scholar
  119. 119.
    Wu W-C, Rathore SS, Wang Y et al. (2001) Blood transfusion in elderly patients with acute myocardial infarction. N Engl J Med 345: 1230–1236CrossRefPubMedGoogle Scholar
  120. 120.
    Zollinger A, Hager P, Singer T et al. (1997) Extreme hemodilution due to massive blood loss in tumor surgery. Anesthesiology 87: 985–987CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • O. Habler
    • 1
  • J. Meier
    • 2
  • A. Pape
    • 2
  • H. Kertscho
    • 2
  • B. Zwißler
    • 2
  1. 1.Klinik für Anästhesiologie, Operative Intensivmedizin und SchmerztherapieKrankenhaus Nordwest GmbHFrankfurt a.M.
  2. 2.Klinik für Anästhesiologie, Operative Intensivmedizin und SchmerztherapieKlinikum der Johann Wolfgang-Goethe-UniversitätFrankfurt a.M.

Personalised recommendations