Der Anaesthesist

, Volume 55, Issue 9, pp 980–988 | Cite as

Behandlungsstrategien des akuten Rauchgasinhalationstraumas

  • D. M. Maybauer
  • D. L. Traber
  • P. Radermacher
  • D. N. Herndon
  • M. O. Maybauer
Intensivmedizin

Zusammenfassung

Die Mehrzahl der tödlichen Brandunfälle ist nicht auf Brandwunden, sondern auf die Inhalation toxischer Gase während des Verbrennungsvorgangs zurückzuführen. Feuer erzeugt eine komplizierte toxische Umgebung durch Hitze, Sauerstoffverbrauch und die Entstehung toxischer Gase, wie Kohlenmonoxid und Zyanid. Die zunehmende Nutzung synthetischer Baumaterialien in Gebäuden, Möbeln, Teppichböden, elektrischen Kabelsträngen und Dekorationen erhöht das potenzielle Risiko der Inhalation toxischer Brandgase. Dieser Übersichtsartikel beschreibt die pathophysiologischen Prozesse nach Inhalationsverletzungen, die durch toxische Substanzen und Chemikalien in Rauchgasen ausgelöst werden, sowie Strategien für die notärztliche Versorgung an der Unfallstelle und die weiterführende intensivmedizinische Behandlung.

Schlüsselwörter

Atemwege Inhalationstrauma Kohlenmonoxid Rauchgas Zyanid 

Treatment strategies for acute smoke inhalation injury

Abstract

Most fatalities from fires are not due to burns, but are a result of inhalation of toxic gases produced during combustion. Fire produces a complex toxic environment, involving flame, heat, oxygen depletion, smoke and toxic gases such as carbon monoxide and cyanide. As a wide variety of synthetic materials is used in buildings, such as insulation, furniture, carpeting, electric wiring covering as well as decorative items, the potential for poisoning from inhalation of products of combustion is continuously increasing. The present review describes the pathophysiologic effects from smoke inhalation injury as well as strategies for emergency treatment on scene and in the intensive care setting.

Keywords

Airway Carbonmonoxide Cyanide Inhalation injury Smoke 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Alcorta R (2004) Smoke inhalation & acute cyanide poisoning. Hydrogen cyanide poisoning proves increasingly common in smoke-inhalation victims. JEMS 29 [Suppl]: 6–15Google Scholar
  2. 2.
    Bastigkeit M (2000) Blausäureintoxikationen. Rettungsdienst 12(23): 56–59Google Scholar
  3. 3.
    Baud FJ, Barriot P, Toffis V et al. (1991) Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 325: 1761–1766PubMedGoogle Scholar
  4. 4.
    Becker CE (1985) The role of cyanide in fires. Vet Hum Toxicol 27: 487–490PubMedGoogle Scholar
  5. 5.
    Blocker V, Blocker TG Jr (1949) The Texas City disaster; a survey of 3,000 casualties. Am J Surg 78: 756–771CrossRefPubMedGoogle Scholar
  6. 6.
    Burns TR, Mace ML, Greenberg SD, Jachimczyk JA (1985) Ultrastructure of acute ammonia toxicity in the human lung. Am J Forensic Med Pathol 6: 204–210PubMedGoogle Scholar
  7. 7.
    Charnock EL, Meehan JJ (1980) Postburn respiratory injuries in children. Pediatr Clin North Am 27: 661–676PubMedGoogle Scholar
  8. 8.
    Clark CJ, Campbell D, Reid WH (1981) Blood carboxyhaemoglobin and cyanide levels in fire survivors. Lancet 1: 1332–1335CrossRefPubMedGoogle Scholar
  9. 9.
    Cox RA, Burke AS, Soejima K et al. (2003) Airway obstruction in sheep with burn and smoke inhalation injuries. Am J Respir Cell Mol Biol 29: 295–302CrossRefPubMedGoogle Scholar
  10. 10.
    Crapo RO (1981) Smoke-inhalation injuries. JAMA 246: 1694–1696CrossRefPubMedGoogle Scholar
  11. 11.
    Deitch EA (1990) The management of burns. N Engl J Med 323: 1249–1253PubMedGoogle Scholar
  12. 12.
    Eckstein M (2004) Cyanide as a chemical terrorism weapon. JEMS 29(8): 22–31Google Scholar
  13. 13.
    Fitzpatrick DF, Gioffi WG (2002) Diagnosis and treatment of inhalation injury. In: Herndon D (ed) Total burn care. Saunders, New York, pp 232–242Google Scholar
  14. 14.
    Fodor L, Fodor A, Ramon Y et al. (2006) Controversies in fluid resuscitation for burn management: literature review and our experience. Injury 37(5): 374–379. Epub 2005 Aug 22CrossRefPubMedGoogle Scholar
  15. 15.
    Fortin JL, Ruttima M, Domanski L, Kowalski JJ (2004) Hydroxocobalamin: treatment for smoke inhalation-associated cyanide poisoning. Meeting the needs of fire victims. JEMS 29(8): 18–21Google Scholar
  16. 16.
    Goldbaum LR, Orellano T, Dergal E (1976) Mechanism of the toxic action of carbon monoxide. Ann Clin Lab Sci 6: 372–376PubMedGoogle Scholar
  17. 17.
    Hall AH, Rumack BH (1986) Clinical toxicology of cyanide. Ann Emerg Med 15: 1067–1074CrossRefPubMedGoogle Scholar
  18. 18.
    Hampson NB (1998) Pulse oximetry in severe carbon monoxide poisoning. Chest 114(4): 1036–1041PubMedGoogle Scholar
  19. 19.
    Haponik EF (1993) Clinical smoke inhalation injury: pulmonary effects. Occup Med 8: 430–468PubMedGoogle Scholar
  20. 20.
    Hierl T, Nowak D (2005) What therapy options are reliable in smoke inhalation? Dtsch Med Wochenschr 130(50): 2912–2913CrossRefPubMedGoogle Scholar
  21. 21.
    Jordan MH, Hollowed KA, Turner DG et al. (2005) The Pentagon attack of September 11, 2001: a burn center’s experience. J Burn Care Rehabil 26: 109–116CrossRefPubMedGoogle Scholar
  22. 22.
    Khan AS, Morse S, Lillibridge S (2000) Public-health preparedness for biological terrorism in the USA. Lancet 356: 1179–1182CrossRefPubMedGoogle Scholar
  23. 23.
    Kirk MA, Gerace R, Kulig KW (1993) Cyanide and methemoglobin kinetics in smoke inhalation victims treated with the cyanide antidote kit. Ann Emerg Med 22: 1413–1418CrossRefPubMedGoogle Scholar
  24. 24.
    Maybauer DM, Maybauer MO, Traber DL (2006) Experimental therapies for hypoxic pulmonary vasoconstriction. Shock 25: 314CrossRefPubMedGoogle Scholar
  25. 25.
    Maybauer MO, Maybauer DM, Herndon DN (2006) Incidence and outcomes of acute lung injury. N Engl J Med 26: 416–417Google Scholar
  26. 26.
    Maybauer MO, Maybauer DM, Herndon DN, Traber DL (2006) The role of superoxide dismutase in systemic inflammation. Shock 25(2): 206–207CrossRefPubMedGoogle Scholar
  27. 27.
    Maybauer MO, Maybauer DM, Fraser JF et al. (2006) Recombinant human activated protein C improves pulmonary function in ovine acute lung injury following smoke inhalation injury and sepsis. Crit Care Med (in press)Google Scholar
  28. 28.
    Moore SJ, Norris JC, Walsh DA, Hume AS (1987) Antidotal use of methemoglobin forming cyanide antagonists in concurrent carbon monoxide/cyanide intoxication. J Pharmacol Exp Ther 242: 70–73PubMedGoogle Scholar
  29. 29.
    Moore SJ, Ho IK, Hume AS (1991) Severe hypoxia produced by concomitant intoxication with sublethal doses of carbon monoxide and cyanide. Toxicol Appl Pharmacol 109: 412–420CrossRefPubMedGoogle Scholar
  30. 30.
    Murakami K, McGuire R, Cox RA et al. (2002) Heparin nebulization attenuates acute lung injury in sepsis following smoke inhalation in sheep. Shock 18: 236–241CrossRefPubMedGoogle Scholar
  31. 31.
    Myers RA, Snyder SK, Linberg S, Cowley RA (1981) Value of hyperbaric oxygen in suspected carbon monoxide poisoning. JAMA 246: 2478–2480CrossRefPubMedGoogle Scholar
  32. 32.
    Pace N, Strajman E, Walker EL (1950) Acceleration of carbon monoxide elimination in man by high pressure oxygen. Science 111: 652–654PubMedGoogle Scholar
  33. 33.
    Piantadosi CA (2002) Carbon monoxide poisoning. N Engl J Med 347(14): 1054–1055CrossRefPubMedGoogle Scholar
  34. 34.
    Pittman HS, Schatzki R (1949) Pulmonary effects of the Cocoanut Grove fire; a 5 year follow up study. N Engl J Med 241: 1008PubMedGoogle Scholar
  35. 35.
    Prien T, Traber DL (1988) Toxic smoke compounds and inhalation injury – A review. Burns Incl Therm Inj 14: 451–460PubMedGoogle Scholar
  36. 36.
    Pruitt BA Jr, Goodwin CW, Mason AD Jr (2002) Epidemiological, demographic, and outcome characteristics of burn injury. In: Herndon DN (ed) Total burn care. Saunders, New York, pp 16–30Google Scholar
  37. 37.
    Purser DA, Grimshaw P, Berrill KR (1984) Intoxication by cyanide in fires: a study in monkeys using polyacrylonitrile. Arch Environ Health 39: 394–400PubMedGoogle Scholar
  38. 38.
    Schwela D (1997) Cooking smoke: a silent killer. People Planet 6: 24–25Google Scholar
  39. 39.
    Shimazu T, Ikeuchi H, Sugimoto H et al. (2000) Half-life of blood carboxyhemoglobin after short-term and long-term exposure to carbon monoxide. J Trauma 49: 126–131PubMedGoogle Scholar
  40. 40.
    Shirani KZ, Pruitt BA Jr, Mason AD Jr (1987) The influence of inhalation injury and pneumonia on burn mortality. Ann Surg 205: 82–87PubMedGoogle Scholar
  41. 41.
    Silverman SH, Purdue GF, Hunt JL, Bost RO (1988) Cyanide toxicity in burned patients. J Trauma 28(2): 171–176PubMedGoogle Scholar
  42. 42.
    Smith PW, Crane R, Sanders DC et al. (1976) Effects of exposure to carbon monoxide and hydrogen cyanide. National Academy of Science, Washington D.C., pp 75–78Google Scholar
  43. 43.
    Smith RP (1986) Toxic responses of the blood. MacMillan, New YorkGoogle Scholar
  44. 44.
    Steen M (1993) Präklinische Diagnostik und Erstversorgung bei Notfallpatienten mit Verbrennungen. Notfallmedizin 19: 17–23Google Scholar
  45. 45.
    Stewart RJ, Mason SW, Taira MT et al. (1994) Effect of radical scavengers and hyperbaric oxygen on smoke-induced pulmonary edema. Undersea Hyperb Med 21: 21–30PubMedGoogle Scholar
  46. 46.
    Terrill JB, Montgomery RR, Reinhardt CF (1978) Toxic gases from fires. Science 200: 1343–1347PubMedGoogle Scholar
  47. 47.
    Thierbach A, Maybauer M, Piepho T, Wolcke B (2003) Monitoring in der Notfallmedizin. Notfall Rettungsmed 6: 206–218CrossRefGoogle Scholar
  48. 48.
    Thom SR (1992) Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. J Appl Physiol 73: 1584–1589PubMedGoogle Scholar
  49. 49.
    Thompson PB, Herndon DN, Traber DL, Abston S (1986) Effect on mortality of inhalation injury. J Trauma 26: 163–165PubMedGoogle Scholar
  50. 50.
    Traber DL, Herndon DN, Soejima K (2002) The pathophysiology of inhalation injury. In: Herndon DN (ed) Total burn care. Saunders, New York, pp 221–231Google Scholar
  51. 51.
    Villanueva E, Bennett E, Wasiak J, Lehm JP (2005) Hyperbaric oxygen therapy for thermal burns. Cochrane Library, John Wiley & Sons, Chichester, UKGoogle Scholar
  52. 52.
    Weaver LK, Hopkins RO, Chan KJ et al. (2002) Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 347(14): 1057–1067CrossRefPubMedGoogle Scholar
  53. 53.
    Westphal M, Morita N, Enkhbaatar P et al. (2003) Carboxyhemoglobin formation following smoke inhalation injury in sheep is interrelated with pulmonary shunt fraction. Biochem Biophys Res Commun 311: 754–758CrossRefPubMedGoogle Scholar
  54. 54.
    Yurt RW, Bessey PQ, Bauer GJ et al. (2005) A regional burn center’s response to a disaster: September 11, 2001, and the days beyond. J Burn Care Rehabil 26: 117–124CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • D. M. Maybauer
    • 1
    • 2
  • D. L. Traber
    • 2
  • P. Radermacher
    • 1
  • D. N. Herndon
    • 2
  • M. O. Maybauer
    • 2
    • 3
  1. 1.Sektion Anästhesiologische Pathophysiologie und VerfahrensentwicklungUniversitätsklinik für AnästhesiologieUlm
  2. 2.Departments of Anesthesiology and SurgeryThe University of Texas Medical Branch and Shriners Burns Hospital for ChildrenGalvestonUSA
  3. 3.Orthopädische Universitätsklinik mit Querschnittgelähmtenzentrum am Rehabilitationskrankenhaus Ulm

Personalised recommendations