Der Anaesthesist

, Volume 55, Issue 9, pp 926–936 | Cite as

Frischplasma und Faktorenkonzentrate zur Therapie der perioperativen Koagulopathie

Was ist bekannt?
Leitthema

Zusammenfassung

Die erworbene, perioperative Koagulopathie entwickelt sich meist aus einer akuten Blutung. Beim primär gesunden Patienten mit normaler Knochenmark- und Leberfunktion tritt erst ein Mangel an Gerinnungsfaktoren ein, bevor sekundär eine Thrombopenie hinzukommt. Der Ersatz von Gerinnungsfaktoren kann grundsätzlich durch Frischplasma (Einzelspender oder Poolplasma) oder Faktorenkonzentrate erfolgen. Frischplasma und Faktorenkonzentrate, die in den deutschsprachigen Ländern vertrieben werden, erfüllen alle hohe Qualitäts- und Sicherheitsstandards. Unerwünschte Wirkungen durch Infektionsübertragungen und immunologische Reaktionen sind bei virusinaktiviertem Poolplasma und Faktorenkonzentraten höchstwahrscheinlich seltener als bei Einzelspenderplasma. Dagegen sind bei Letzterem thromboembolische Komplikationen wegen des ausgeglichenen Verhältnisses von pro- und antikoagulatorisch wirkenden Faktoren nicht zu erwarten, wurden aber vereinzelt für virusinaktiviertes Poolplasma und Faktorenkonzentrate beschrieben. Faktorenkonzentrate sind einfacher zu lagern und stehen sofort zum Einsatz zur Verfügung, während gefrorenes Frischplasma für die klinische Anwendung erst aufgetaut werden muss. Bei aktivierter Hämostase sind die unter physiologischen Bedingungen beschriebenen Halbwertszeiten der plasmatischen und zellulären Gerinnungskomponenten oft erheblich reduziert. Deshalb müssen bei der perioperativen Koagulopathie mit akutem Blutverlust meist höhere Dosierungen von Frischplasma und Faktorenkonzentraten für die effektive Therapie verabreicht werden, als in vielen aktuellen Leit- und Richtlinien zur Gerinnungstherapie beschrieben sind. Bei der Gabe von Frischplasma ist im Gegensatz zu den Faktorenkonzentraten zudem der resultierende Volumeneffekt zu berücksichtigen. Zusammenfassend lässt sich sagen, dass im Rahmen eines zeitgemäßen perioperativen Gerinnungsmanagements sowohl Frischplasma als auch Faktorenkonzentrate verfügbar und dem Anästhesisten vertraut sein sollten, um an die Situation des blutenden Patienten angepasst und zielgerichtet, an Laborwerten orientiert, eingesetzt werden zu können.

Schlüsselwörter

Dosierung Hämotherapie Koagulopathie Sicherheit Unerwünschte Wirkung 

Fresh plasma and concentrates of clotting factors for therapy of perioperative coagulopathy

What is known?

Abstract

Acquired, perioperative coagulopathy often develops due to acute bleeding. In the case of primarily healthy patients with normal bone marrow and liver functions, a lack of coagulation factors initiates coagulopathy before secondary thrombopenia arises. Replacement of coagulation factors can be performed by infusion of fresh plasma (single donor or pooled plasma) or concentrates of clotting factors. Fresh plasma as well as concentrates of clotting factors available in German-speaking countries are of high quality and fulfil all safety standards. Undesirable side-effects due to transmission of infections and immunological reactions are – in all probability – more uncommon for virus-inactivated plasma and clotting factors than for single donor plasma. In contrast, thromboembolic complications are unlikely when using fresh frozen plasma, because it contains a balanced ratio of pro-coagulatory and anti-coagulatory factors. For virus-inactivated pooled plasma and concentrates of clotting factors, sporadic reports of thromboembolic events have been published. Concentrates of clotting factors can be stored easily and are rapidly prepared for use. In contrast, fresh frozen plasma has to be thawed before application leading to a significant delay in the schedule. During activated hemostasis, the half-life of clotting factors is significantly reduced in comparison to a stable physiological situation. In the case of perioperative coagulopathy higher dosages of fresh plasma and clotting factors than those recommended in published guidelines are often necessary for successful treatment. When using fresh plasma for coagulation therapy the resulting volume load must be considered. In conclusion, a modern concept of perioperative coagulation management should include fresh plasma as well as concentrates of clotting factors. The anesthetist should be familiar with the available components and be able to consider and adapt them to the individual situation.

Keywords

Coagulopathy Dosage Hemotherapy Safety Side-effect 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Herr Dr. B. Heindl hat von der Firma ZLB Behring und Herr Dr. M. Spannagl von den Firmen ZLB Behring und Baxter Honorare für wissenschaftliche Vorträge erhalten.

Literatur

  1. 1.
    Barletta JF, Ahrens CL, Tyburski JG et al. (2005) A review of recombinant factor VII for refractory bleeding in nonhemophilic trauma patients. J Trauma 58: 646–651PubMedGoogle Scholar
  2. 2.
    Boffard KD, Riou B, Warren B et al. (2005) Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma 59: 8–15PubMedGoogle Scholar
  3. 3.
    Brohi K, Singh J, Heron M et al. (2003) Acute traumatic coagulopathy. J Trauma 54: 1127–1130PubMedGoogle Scholar
  4. 4.
    Bundesärztekammer (2005) Leitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten. Deutscher Ärzte-Verlag, KölnGoogle Scholar
  5. 5.
    Cartmill M, Dolan G, Byrne JL et al. (2000) Prothrombin complex concentrate for oral anticoagulant reversal in neurosurgical emergencies. Br J Neurosurg 14: 458–461CrossRefPubMedGoogle Scholar
  6. 6.
    Chowdhury P, Saayman AG, Paulus U et al. (2004) Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol 125: 69–73CrossRefPubMedGoogle Scholar
  7. 7.
    Deutsches Rotes Kreuz (2004) Humanes S/D-Plasma, lyophilisert – Das virusinaktivierte Humanplasma der DRK-Blutspendedienste West gGMBH. Haemotherapie 2: R1–R8Google Scholar
  8. 8.
    Domen RE, Hoeltge GA (2003) Allergic transfusion reactions: an evaluation of 273 consecutive reactions. Arch Pathol Lab Med 127: 316–320PubMedGoogle Scholar
  9. 9.
    Foster PR, Welch AG, McLean C et al. (2000) Studies on the removal of abnormal prion protein by processes used in the manufacture of human plasma products. Vox Sang 78: 86–95CrossRefPubMedGoogle Scholar
  10. 10.
    Fries D, Haas T, Salchner V et al. (2005) Gerinnungsmanagement beim Polytrauma. Anaesthesist 54: 137–144CrossRefPubMedGoogle Scholar
  11. 11.
    Gerlach R, Tolle F, Raabe A et al. (2002) Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study. Stroke 33: 1618–1623CrossRefPubMedGoogle Scholar
  12. 12.
    Gilstad CW, Ketchum LH, Hmel PJ et al. (2002) Lack of PF3 activity in solvent/detergent treated plasma. Vox Sang [Suppl 2]: 223–224Google Scholar
  13. 13.
    Gödje O, Haushofer M, Lamm P et al. (1998) The effect of factor XIII on bleeding in coronary surgery. Thorac Cardiovasc Surg 46: 263–267PubMedGoogle Scholar
  14. 14.
    Grundmann C, Plesker R, Kusch M et al. (2005) Prothrombin overload causes thromboembolic complications in prothrombin complex concentrates: in vitro and in vivo evidence. Thromb Haemost 94: 1338–1339PubMedGoogle Scholar
  15. 15.
    Hardy JF, Moerloose P de, Samama M (2004) Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth 51: 293–310PubMedGoogle Scholar
  16. 16.
    Haschberger B, Waterkamp A, Heiden M et al. (2005) Bericht zur Meldung nach §21 TFG für die Jahre 2001 und 2002. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 48: 99–119CrossRefPubMedGoogle Scholar
  17. 17.
    Heiden M, Seitz R (2002) Quality of therapeutic plasma-requirements for marketing authorization. Thromb Res 107 [Suppl 1]: S47–51Google Scholar
  18. 18.
    Heindl B, Delorenzo C, Spannagl M (2005) Hochdosierte Fibrinogengabe zur Akuttherapie von Gerinnungsstörungen bei perioperativer Massivtransfusion. Anaesthesist 54: 787–790CrossRefPubMedGoogle Scholar
  19. 19.
    Hellstern P (2004) Solvent/detergent-treated plasma: composition, efficacy, and safety. Curr Opin Hematol 11: 346–350CrossRefPubMedGoogle Scholar
  20. 20.
    Hellstern P, Muntean W, Schramm W et al. (2002) Practical guidelines for the clinical use of plasma. Thromb Res 107 [Suppl 1]: S53–57Google Scholar
  21. 21.
    Hiippala ST, Myllyla GJ, Vahtera EM (1995) Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 81: 360–365CrossRefPubMedGoogle Scholar
  22. 22.
    Innerhofer P, Fries D, Margreiter J et al. (2002) The effects of perioperatively administered colloids and crystalloids on primary platelet-mediated hemostasis and clot formation. Anesth Analg 95: 858–865CrossRefPubMedGoogle Scholar
  23. 23.
    Ironside JW, Head MW (2004) Variant Creutzfeldt-Jakob disease: risk of transmission by blood and blood products. Haemophilia 10 [Suppl 4]: 64–69Google Scholar
  24. 24.
    Jonge J de, Groenland TH, Metselaar HJ et al. (2002) Fibrinolysis during liver transplantation is enhanced by using solvent/detergent virus-inactivated plasma (ESDEP). Anesth Analg 94: 1127–1131CrossRefPubMedGoogle Scholar
  25. 25.
    Joshi GP (2005) Intraoperative fluid restriction improves outcome after major elective gastrointestinal surgery. Anesth Analg 101: 601–605CrossRefPubMedGoogle Scholar
  26. 26.
    Köhler M (1999) Thrombogenicity of prothrombin complex concentrates. Thromb Res 95: S13–17CrossRefPubMedGoogle Scholar
  27. 27.
    Llewelyn CA, Hewitt PE, Knight RS et al. (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363: 417–421CrossRefPubMedGoogle Scholar
  28. 28.
    Martinowitz U, Michaelson M (2005) Guidelines for the use of recombinant activated factor VII (rFVIIa) in uncontrolled bleeding: a report by the Israeli Multidisciplinary rFVIIa Task Force. J Thromb Haemost 3: 640–648CrossRefPubMedGoogle Scholar
  29. 29.
    Nomura S, Okamae F, Abe M et al. (2000) Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes. Clin Appl Thromb Hemost 6: 213–221PubMedGoogle Scholar
  30. 30.
    O’Shaughnessy DF, Atterbury C, Bolton Maggs P et al. (2004) Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol 126: 11–28CrossRefPubMedGoogle Scholar
  31. 31.
    Peden AH, Head MW, Ritchie DL et al. (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364: 527–529CrossRefPubMedGoogle Scholar
  32. 32.
    Popovsky MA, Moore SB (1985) Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion 25: 573–577CrossRefPubMedGoogle Scholar
  33. 33.
    Roth WK, Seifried E (2003) Infektionsrisiken durch Blutkomponenten und Blutprodukte. Hämotherapie 1: 22–35Google Scholar
  34. 34.
    Schreiber GB, Busch MP, Kleinman SH et al. (1996) The risk of transfusion-transmitted viral infections. The Retrovirus Epidemiology Donor Study. N Engl J Med 334: 1685–1690CrossRefPubMedGoogle Scholar
  35. 35.
    Scott VL, Wolf AM de, Kang Y et al. (1996) Ionized hypomagnesemia in patients undergoing orthotopic liver transplantation: a complication of citrate intoxication. Liver Transpl Surg 2: 343–347CrossRefPubMedGoogle Scholar
  36. 36.
    Soucie JM, Robertson BH, Bell BP et al. (1998) Hepatitis A virus infections associated with clotting factor concentrate in the United States. Transfusion 38: 573–579CrossRefPubMedGoogle Scholar
  37. 37.
    Spahn DR, Rossaint R (2005) Coagulopathy and blood component transfusion in trauma. Br J Anaesth 95: 130–139CrossRefPubMedGoogle Scholar
  38. 38.
    Stanworth SJ, Brunskill SJ, Hyde CJ et al. (2004) Is fresh frozen plasma clinically effective? A systematic review of randomized controlled trials. Br J Haematol 126: 139–152CrossRefPubMedGoogle Scholar
  39. 39.
    Staudinger T, Frass M, Rintelen C et al. (1999) Influence of prothrombin complex concentrates on plasma coagulation in critically ill patients. Intensive Care Med 25: 1105–1110CrossRefPubMedGoogle Scholar
  40. 40.
    Tabor E (1999) The epidemiology of virus transmission by plasma derivatives: clinical studies verifying the lack of transmission of hepatitis B and C viruses and HIV type 1. Transfusion 39: 1160–1168CrossRefPubMedGoogle Scholar
  41. 41.
    Toy P, Popovsky MA, Abraham E et al. (2005) Transfusion-related acute lung injury: definition and review. Crit Care Med 33: 721–726CrossRefPubMedGoogle Scholar
  42. 42.
    Wallis JP, Lubenko A, Wells AW et al. (2003) Single hospital experience of TRALI. Transfusion 43: 1053–1059CrossRefPubMedGoogle Scholar
  43. 43.
    Yarranton H, Cohen H, Pavord SR et al. (2003) Venous thromboembolism associated with the management of acute thrombotic thrombocytopenic purpura. Br J Haematol 121: 778–785CrossRefPubMedGoogle Scholar
  44. 44.
    Yasaka M, Sakata T, Naritomi H et al. (2005) Optimal dose of prothrombin complex concentrate for acute reversal of oral anticoagulation. Thromb Res 115: 455–459CrossRefPubMedGoogle Scholar
  45. 45.
    Yee TT, Cohen BJ, Pasi KJ et al. (1996) Transmission of symptomatic parvovirus B19 infection by clotting factor concentrate. Br J Haematol 93: 457–459CrossRefPubMedGoogle Scholar
  46. 46.
    Youssef WI, Salazar F, Dasarathy S et al. (2003) Role of fresh frozen plasma infusion in correction of coagulopathy of chronic liver disease: a dual phase study. Am J Gastroenterol 98: 1391–1394CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Klinik für AnaesthesiologieLudwig-Maximilians-UniversitätMünchen
  2. 2.Abteilung für Hämostaseologie und TransfusionsmedizinLudwig-Maximilians-UniversitätMünchen

Personalised recommendations