Der Anaesthesist

, Volume 55, Issue 1, pp 7–16 | Cite as

Neuromuskuläre Restblockaden

Klinische Konsequenzen, Häufigkeit und Vermeidungsstrategien
Leitthema

Zusammenfassung

Muskelrelaxanzien können auch nach Anwendung in klinisch gebräuchlicher Dosierung zu lang anhaltenden Restblockaden führen, die das Risiko schwer wiegender postoperativer pulmonaler Komplikationen erhöhen. Selbst ohne zusätzliche Effekte von Analgetika, Sedativa oder Anästhetika kann eine partielle neuromuskuläre Blockade, die weder mit den Sinnen des Anästhesisten allein noch unter Zuhilfenahme eines einfachen Nervenstimulators zuverlässig ausgeschlossen werden kann (Train-of-Four [TOF]-Ratio: 0,5–0,9), neben der Reduktion der Vitalkapazität auch eine Obstruktion des oberen Atemwegs, Störungen der pharyngealen Funktion sowie eine Beeinträchtigung der hypoxischen Atemantwort bewirken. Das Ausmaß der neuromuskulären Erholung am Ende eines Eingriffs hängt sowohl von dem verwendeten Muskelrelaxans, der Dauer des Eingriffs als auch der Anästhesietechnik und möglicher Begleiterkrankungen des Patienten ab. So ist grundsätzlich davon auszugehen, dass es nach der Verwendung lang wirksamer Muskelrelaxanzien (Pancuronium) häufiger zu neuromuskulären Restblockaden kommt, als dies nach mittellang bzw. kurz wirksamen Substanzen der Fall ist. Wird der Verlauf einer neuromuskulären Blockade kontinuierlich während der gesamten Anästhesie mithilfe des quantitativen neuromuskulären Monitorings der TOF-Ratio überwacht, und nicht nur punktuell am Ende der Operation, so verspricht eine akzeleromyographisch (z. B. „TOF-watch“) gemessene TOF-Ratio von 1 eine adäquate Erholung der neuromuskulären Übertragung von den Effekten der Muskelrelaxanzien.

Schlüsselwörter

Muskelrelaxanzien Neuromuskuläre Blockaden Restblockaden Train-of-Four-Ratio Akzeleromyographie 

Residual neuromuscular blockades

Clinical consequences, frequency and avoidance strategies

Abstract

Even after administration in routine clinical dosages, muscle relaxants can lead to long-lasting residual blockades which increase the risk of severe postoperative pulmonary complications. Even without the additional effects from analgetics, sedatives or anaesthetics, a partial neuromuscular blockade, which cannot reliably be avoided either by the anaesthetist alone or by the additional use of nerve stimulators (train-of-four [TOF] ratio 0.5-0.9), can cause reductions in the vital capacity and the hypoxic breathing response, as well as obstruction of the upper airway and disruption of pharangeal function. The extent of neuromuscular recovery after an operation depends on the muscle relaxant used, the duration of administration, the anaesthetic technique and possible accompanying illnesses of the patient. It must basically be assumed that residual neuromuscular blockades are more frequent after administration of slow acting muscle relaxants such as pancuronium, than after the use of medium or rapid acting substances. If the course of a neuromuscular blockade is continually monitored during the whole anaesthetic procedure using the TOF ratio and not only occasionally at the end, a TOF ratio of 1 measured with an acceleromyograph (e.g. TOF-watch) promises an adequate neuromuscular recovery from the effects of muscle relaxants.

Keywords

Muscle relaxants Neuromuscular blockade Residual effects Train-of-four ratio Acceleromyography 

Literatur

  1. 1.
    Ali HH, Savarese JJ (1976) Monitoring of neuromuscular function. Anesthesiology 45:216–249PubMedGoogle Scholar
  2. 2.
    Ali HH, Wilson RS, Savarese JJ (1975) The effect of tubocurarine on indirectly elicited train-of-four muscle response and respiratory measurements in humans. Br J Anaesth 47:570–574PubMedGoogle Scholar
  3. 3.
    American Thoracic Society (1995) Standardisation of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136PubMedGoogle Scholar
  4. 4.
    Arbous MS, Meursing AEE, Kleef JW van et al. (2005) Impact on anesthesia management characteristics on severe morbidity and mortality. Anesthesiology 102:257–268CrossRefPubMedGoogle Scholar
  5. 5.
    Arora NS, Gal TJ (1981) Cough dynamics during progressive expiratory muscle weakness in healthy curarized subjects. J Appl Physiol 51:494–498PubMedGoogle Scholar
  6. 6.
    Baillard C, Gehan G, Reboul-Marty J, Larmignat P, Samama CM, Cupa M (2000) Residual curarization in the recovery room after vecuronium. Br J Anaesth 84:394–395PubMedGoogle Scholar
  7. 7.
    Baraka A (1975) Potentiation of suxamethonium blockade by neostigmine in patients with atypical cholinesterase. Br J Anaesth 47:416–418PubMedGoogle Scholar
  8. 8.
    Begin P, Mathieu J, Almirall J, Grassino A (1977) Relationship between chronic hypercapnia and respiratory muscle weakness in myotonic dystrophy. Am J Respir Crit Care Med 156:133–139Google Scholar
  9. 9.
    Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbäk J, Skovgaard LT, Krintel JJ (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 41:1095–1103PubMedGoogle Scholar
  10. 10.
    Bevan DR, Smith CE, Donati F (1988) Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology 69:272–276PubMedGoogle Scholar
  11. 11.
    Bevan DR, Donati F, Kopman AF (1992) Reversal of neuromuscular blockade. Anesthesiology 77:785–805PubMedGoogle Scholar
  12. 12.
    Blobner M, Mann R (2001) Anästhesie bei Patienten mit Myasthenia gravis. Anaesthesist 50:484–493CrossRefPubMedGoogle Scholar
  13. 13.
    Brodie BC (1811) Experiments and observations on the different modes in which death is produced by certain vegetable poisons. Philos Trans R Soc 101:194–195Google Scholar
  14. 14.
    Bye PT, Ellis ER, Issa FG, Donnelly PM, Sullivan CE (1990) Respiratory failure and sleep in neuromuscular disease. Thorax 45:241–247PubMedGoogle Scholar
  15. 15.
    Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 100:1119–1124CrossRefPubMedGoogle Scholar
  16. 16.
    Debaene B, Plaud B, Dilly MP, Donati F (2003) Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology 98:1042–1048CrossRefPubMedGoogle Scholar
  17. 17.
    Eikermann M, Groeben H, Hüsing J, Peters J (2003) Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology 98:1333–1337CrossRefPubMedGoogle Scholar
  18. 18.
    Eikermann M, Gröben H, Bünten B, Peters J (2005) Fade of pulmonary function during residual neuromuscular blockade. Chest 127:1703–1709CrossRefPubMedGoogle Scholar
  19. 19.
    Eikermann M, Hasselmann C, Beiderlinden M, Peters J (2005) Force, fatigue, and contractile behaviour of skeletal muscle after clinical recovery from neuromuscular blockade. Anesthesiology 103:A1125Google Scholar
  20. 20.
    Eikermann M, Vogt FM, Dastgerdi MV, Herbstreit F, Peters J (2005) Inspiratory upper airway obstruction during partial neuromuscular blockade. Anesthesiology 103:A1114Google Scholar
  21. 21.
    Eikermann M, Grote T, Blobner M, Rex C, Groeben H, Peters J (2006) Postoperative upper airway obstruction after recovery of the TOF-ratio of the adductor pollicis muscle from neuromuscular blockade. Anesth Analg (in press)Google Scholar
  22. 22.
    Eriksson LI (1996) Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand 40:520–523PubMedGoogle Scholar
  23. 23.
    Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, Kuylenstierna R (1997) Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 87:1035–1043CrossRefPubMedGoogle Scholar
  24. 24.
    Frank SM, Fleisher LA, Olson KF et al. (1995) Multivariate determinants of early postoperative oxygen consumption in elderly patients. Effects of shivering, body temperature, and gender. Anesthesiology 83:241–249CrossRefPubMedGoogle Scholar
  25. 25.
    Fuchs-Buder T, Mencke T (2001) Neuromuskuläres Monitoring. Anaesthesist 50:129–138CrossRefPubMedGoogle Scholar
  26. 26.
    Fuchs-Buder T, Mencke T (2001) Use of reversal agents in day care procedures (with special reference to postoperative nausea and vomiting). Eur J Anaesth 18 [Suppl 23]:53–59Google Scholar
  27. 27.
    Fuchs-Buder T, Tassonyi E (1996) Magnesium sulphate enhances residual neuromuscular block induced by vecuronium. Br J Anaesth 76:565–566PubMedGoogle Scholar
  28. 28.
    Fuchs-Buder T, Hofmockel R, Geldner G, Diefenbach C, Ulm K, Blobner M (2003) Einsatz des neuromuskulären Monitorings in Deutschland. Anaesthesist 52:522–526PubMedGoogle Scholar
  29. 29.
    Gal TJ, Goldberg SK (1981) Relationship between respiratory muscle strength and vital capacity during partial curarization in awake subjects. Anesthesiology 54:141–147PubMedGoogle Scholar
  30. 30.
    Gal TJ, Smith TC (1976) Partial paralysis with d-tubocurarine and the ventilatory response to CO2: an example of respiratory sparing? Anesthesiology 45:22–28PubMedGoogle Scholar
  31. 31.
    Gijsenbergh F, Ramael S, Houwing NM, Iersel T van (2005) First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 103:695–703CrossRefPubMedGoogle Scholar
  32. 32.
    Harper NJ, Martlew R, Strang T, Wallace M (1994) Monitoring neuromuscular block by acceleromyograph: comparison of the mini-accelerograph with the myograph. Br J Anaesth 72:411–414PubMedGoogle Scholar
  33. 33.
    Jonsson M, Wyon N, Lindahl SG, Fredholm BB, Eriksson LI (2004) Neuromuscular blocking agents block carotid body neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 497:173–180CrossRefPubMedGoogle Scholar
  34. 34.
    Kleinschmidt S, Ziegeler S, Bauer C (2005) Cholinesterasehemmer: Stellenwert in Anästhesie, Intensivmedizin, Notfallmedizin und Schmerztherapie. Anaesthesist 54:791–799CrossRefPubMedGoogle Scholar
  35. 35.
    Kopman AF, Sinha N (2003) Acceleromyography as a guide to anesthetic management: a case report. J Clin Anesth 15:145–148CrossRefPubMedGoogle Scholar
  36. 36.
    Lee C (1975) Train-of-four quantification of competitive neuromuscular block. Anesth Analg 54:649–653PubMedGoogle Scholar
  37. 37.
    Meistelman C, Fuchs-Buder T (2005) Benefit/risk ratio of neuromuscular blocking agents. In: Bannister J, Mellor I (eds) ESA refresher course book 2005, pp 87–91;http://www.euroanesthesia.org/education/rc2005vienna/9RC2.pdf. Cited 14 Dec 2005
  38. 38.
    Meistelman C, Fuchs-Buder T, Debaene B, Plaud B (2005) Curarisation peropératoire. In: Conférénces d’actualisation. Les essentiels 2005. Elsevier, Paris, pp 403–418Google Scholar
  39. 39.
    Melissant CF, Lammers JW, Demedts M (1995) Rigid external resistances cause effort dependent maximal expiratory and inspiratory flows. Am J Respir Crit Care Med 152:1709–1712PubMedGoogle Scholar
  40. 40.
    Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, Fuchs-Buder T (2003) Laryngeal morbidity and quality of tracheal intubation: a randomized, controlled trial. Anesthesiology 98:1049–1056CrossRefPubMedGoogle Scholar
  41. 41.
    Miller RD (1976) Antagonism of neuromuscular blockade. Anesthesiology 44:318–329PubMedGoogle Scholar
  42. 42.
    Samet A, Capron F, Alla F, Meistelman C, Fuchs-Buder T (2005) Single acceleromyographic train-of-four, 100 hertz tetanus or double burst stimulation: which test performs better to detect residual paralysis. Anesthesiology 1002:51–56CrossRefGoogle Scholar
  43. 43.
    Savarese JJ, Caldwell JE, Lien CA, Miller RD (2000) Pharmacology of muscle relaxants and their antagonists. In: Miller RD (ed) Anesthesia, 5th edn. Churchill Livingstone, Philadelphia, pp 412–490Google Scholar
  44. 44.
    Schlaich N, Fuchs-Buder T (2001) Neuromuskuläres Monitoring: Die Wahl des Stimulationsmusters. Anaesthesist 49 [Suppl 1]:11–13Google Scholar
  45. 45.
    Sparr HJ (2002) Cyclodextrine: Ein neues Konzept zur Antagonisierung von Muskelrelaxanzien. Anaesthesist 51:929–930CrossRefPubMedGoogle Scholar
  46. 46.
    Sparr HJ, Beaufort TM, Fuchs-Buder T (2001) Newer neuromuscular blocking agents: how do they compare with established agents? Drugs 61:919–942PubMedGoogle Scholar
  47. 47.
    Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI (2000) The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 92:977–984CrossRefPubMedGoogle Scholar
  48. 48.
    Varrato J, Siderowf A, Damiano P, Gregory S, Feinberg D, McCluskey L (2001) Postural change of forced vital capacity predicts some respiratory symptoms in ALS. Neurology 24:357–359Google Scholar
  49. 49.
    Viby-Mogensen J, Jensen E, Werner M, Kirkegaard-Nielsen H (1988) Measurement of acceleration: a new method of monitoring neuromuscular function. Acta Anaesthesiol Scand 32:45–48PubMedGoogle Scholar
  50. 50.
    Wyon N, Joensen H, Yamamoto Y, Lindahl SG, Eriksson LI (1998) Carotid body chemoreceptor function is impaired by vecuronium during hypoxia. Anesthesiology 89:1471–1479CrossRefPubMedGoogle Scholar
  51. 51.
    Yost CS, Maestrone E (1994) Clinical concentrations of edrophonium enhance desensitization of the nicotinic acetylcholine receptor. Anesth Analg 78:520–526PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Département d’Anesthésie-RéanimationCentre Hospitalier Universitaire de Nancy/Brabois
  2. 2.Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikumEssen
  3. 3.Département d’Anesthésie-RéanimationCentre Hospitalier Universitaire de Nancy/BraboisVandoeuvre-Les-NancyFrankreich

Personalised recommendations