Advertisement

Der Anaesthesist

, Volume 54, Issue 9, pp 861–870 | Cite as

Myokardiale Präkonditionierung durch volatile Anästhetika

Narkose als protektive Intervention?
  • H. Buchinger
  • U. Grundmann
  • S. ZiegelerEmail author
Leitthema

Zusammenfassung

Die Minimierung des perioperativen kardiovaskulären Risikos durch medikamentöse Interventionen spielt in der Anästhesie eine wichtige Rolle. So hat z. B. die Therapie mit β-Blockern inzwischen einen festen Stellenwert in der perioperativen anästhesiologischen Behandlung erlangt. In der Literatur gibt es eine zunehmende Fülle an Hinweisen auf einen myokardprotektiven Effekt der volatilen Anästhetika. Dieses Phänomen wird mit dem Begriff der anästhetikainduzierten Präkonditionierung (AP) beschrieben. Tierexperimentelle Daten sind vielfältig und komplex. Die Mechanismen der anästhetikainduzierten Kardioprotektion wurden eingehend untersucht, sind aber letztlich nicht abschließend geklärt. Auch erste klinische Daten belegen einen protektiven Effekt der inhalativen Anästhetika anhand von myokardialen Funktions- und Schädigungsparametern. Daher stellt sich für den klinisch tätigen Anästhesisten die Frage einer praktischen Relevanz für die Narkoseführung bei Patienten mit entsprechendem Risikoprofil. Die vorliegende Arbeit gibt einen Überblick über die derzeitigen wissenschaftlichen Ergebnisse mit einer Fokussierung auf die Mechanismen der anästhesiologischen Präkonditionierung und auf klinische Untersuchungen.

Schlüsselwörter

Myokardprotektion Inhalationsanästhetika Anästhesiologische Präkonditionierung Kardioanästhesie 

Myocardial preconditioning with volatile anesthetics

General anesthesia as protective intervention?

Abstract

Reduction of the perioperative cardiovascular risk with pharmacological interventions plays a prominent role in routine anesthesia practice. For example, perioperative beta-blockade is well established in anesthesiological treatment of patients. There is a growing body of evidence supporting the cardioprotective effects of volatile anesthetics known as anesthetic-induced preconditioning. There are numerous and complex data from animal studies. The mechanisms of anesthetic-induced preconditioning have been extensively studied but have still not been clearly identified. Initial clinical data show the cardioprotective effects of volatile agents by looking at parameters of myocardial function and laboratory values and therefore, the question of the relevance of these data for routine clinical practice has been raised. This review gives a summary of the currently available data focusing on the mechanisms of anesthesiological preconditioning and clinical studies.

Keywords

Myocardial protection Inhalational anesthetics Anesthesiological preconditioning Cardiac anesthesia 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Alcindor D, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR (2004) Cyclooxygenase-2 mediates ischemic, anesthetic, and pharmacologic preconditioning in vivo. Anesthesiology 100:547–554PubMedGoogle Scholar
  2. 2.
    Azab SR el, Rosseel PM, Lange JJ de, Groeneveld AB, Strijk R van, Wijk EM van, Scheffer GJ (2003) Effect of sevoflurane on the ex vivo secretion of TNF-alpha during and after coronary artery bypass surgery. Eur J Anaesthesiol 20:380–384PubMedGoogle Scholar
  3. 3.
    Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216PubMedGoogle Scholar
  4. 4.
    Bein B, Renner J, Caliebe D et al. (2005) Sevoflurane but not propofol preserves myocardial function during minimally invasive direct coronary artery bypass surgery. Anesth Analg 100:610–616PubMedGoogle Scholar
  5. 5.
    Belhomme D, Peynet J, Louzy M, Launay JM, Kitakaze M, Menasche P (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:II-340–II-344Google Scholar
  6. 6.
    Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC (1999) Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol 277:H128–H135PubMedGoogle Scholar
  7. 7.
    Bland JH, Lowenstein E (1976) Halothane-induced decrease in experimental myocardial ischemia in the non-failing canine heart. Anesthesiology 45:287–293PubMedGoogle Scholar
  8. 8.
    Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983PubMedGoogle Scholar
  9. 9.
    Bonventre JV (2002) Kidney ischemic preconditioning. Curr Opin Nephrol Hypertens 11:43–48PubMedGoogle Scholar
  10. 10.
    Cain BS, Meldrum DR, Dinarello CA, Meng X, Joo KS, Banerjee A, Harken AH (1999) Tumour necrosis factor-α and interleukin-1β synergistically depress human myocardial function. Crit Care Med 27:1309–1318PubMedGoogle Scholar
  11. 11.
    Carroll R, Gant VA, Yellon DM (2001) Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51:691–700PubMedGoogle Scholar
  12. 12.
    Cason BA, Gamperl AK, Slocum RE, Hickey RF (1997) Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology 87:1182–1190PubMedGoogle Scholar
  13. 13.
    Clavien PA, Selzner M, Rudiger HA, Graf R, Kadry Z, Rousson V, Jochum W (2003) A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 238:843–850PubMedPubMedCentralGoogle Scholar
  14. 14.
    Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94:1133–1138PubMedGoogle Scholar
  15. 15.
    Conahan TJ, Ominsky AJ, Wollman H, Stroth RA (1973) A prospective random comparison of halothane and morphine for open-heart anesthesia: one year’s experience. Anesthesiology 38:528–535PubMedGoogle Scholar
  16. 16.
    Conzen PF, Fischer S, Detter C, Peter K (2003) Sevoflurane provides greater protection of the myocardium than propofol in patients undergoing off-pump coronary artery bypass surgery. Anesthesiology 99:826–833PubMedGoogle Scholar
  17. 17.
    Cope DK, Impastato WK, Cohen MV, Downey JM (1997) Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86:699–709PubMedGoogle Scholar
  18. 18.
    Davis RF, Sidi A (1989) Effect of isoflurane on the extent of myocardial necrosis and on systemic hemodynamics, regional myocardial blood flow, and regional myocardial metabolism in dogs after coronary artery occlusion. Anesth Analg 69:575–586PubMedGoogle Scholar
  19. 19.
    Fellahi JL, Gue X, Philippe E, Riou B, Gerard JL (2004) Isoflurane may not influence postoperative cardiac troponin I release and clinical outcome in adult cardiac surgery. Eur J Anaesthesiol 21:688–693PubMedGoogle Scholar
  20. 20.
    Fujimoto K, Bosnjak ZJ, Kwok WM (2002) Isoflurane-induced facilitation of the cardiac sarcolemmal K(ATP) channel. Anesthesiology 97:57–65PubMedGoogle Scholar
  21. 21.
    Garcia C, Julier K, Bestmann L et al. (2005) Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 94:159–165PubMedGoogle Scholar
  22. 22.
    Garlid KD (1980) On the mechanism of regulation of the mitochondrial K+/H+ exchanger. J Biol Chem 255:11273–11279PubMedGoogle Scholar
  23. 23.
    Glantz L, Ginosar Y, Chevion M et al. (1997) Halothane prevents postischemic production of hydroxyl radicals in the canine heart. Anesthesiology 86:440–447PubMedGoogle Scholar
  24. 24.
    Grover GJ (1997) Pharmacology of ATP-sensitive potassium channel (KATP) openers in models of myocardial ischemia and reperfusion. Can J Physiol Pharmacol 75:309–315PubMedGoogle Scholar
  25. 25.
    Guo Y, Jones WK, Xuan YT et al. (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A 96:11507–11512PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hanouz JL, Yvon A, Massetti M et al. (2002) Mechanisms of desflurane-induced preconditioning in isolated human right atria in vitro. Anesthesiology 97:33–41PubMedGoogle Scholar
  27. 27.
    Haroun-Bizri S, Khoury SS, Chehab IR, Kassas CM, Baraka A (2001) Does isoflurane optimize myocardial protection during cardiopulmonary bypass? J Cardiothorac Vasc Anesth 15:418–421PubMedGoogle Scholar
  28. 28.
    Hata K, Whittaker P, Kloner RA, Przyklenk K (1998) Brief antecedent ischemia attenuates platelet-mediated thrombosis in damaged and stenotic canine coronary arteries: role of adenosine. Circulation 97:692–702PubMedGoogle Scholar
  29. 29.
    Hearse DJ, Ferrari R, Sutherland FJ (1999) Cardioprotection: intermittent ventricular fibrillation and rapid pacing can induce preconditioning in the blood-perfused rat heart. J Mol Cell Cardiol 31:1961–1973PubMedGoogle Scholar
  30. 30.
    Hemmings HC Jr, Adamo AI (1996) Activation of endogenous protein kinase C by halothane in synaptosomes. Anesthesiology 84:652–662PubMedGoogle Scholar
  31. 31.
    Hert SG de, Broecke PW ten, Mertens E, Sommeren EW van, Blier IG de, Stockman BA, Rodrigus IE (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49PubMedGoogle Scholar
  32. 32.
    Hert SG de, Cromheecke S, Broecke PW ten et al. (2003) Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 99:314–323PubMedGoogle Scholar
  33. 33.
    Hert SG de, Linden PJ van der, Cromheecke S et al. (2004) Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 101:9–20PubMedGoogle Scholar
  34. 34.
    Hert SG de, Linden PJ van der, Cromheecke S et al. (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 101:299–310PubMedGoogle Scholar
  35. 35.
    Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92:4666–4670PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hoek TL van den, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098Google Scholar
  37. 37.
    Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576PubMedPubMedCentralGoogle Scholar
  38. 38.
    Holmuhamedov EL, Wang L, Terzic A (1999) ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519:347–360PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hu G, Vasiliauskas T, Salem MR, Rhone DP, Crystal GJ (2003) Neutrophils pretreated with volatile anesthetics lose ability to cause cardiac dysfunction. Anesthesiology 98:712–718PubMedGoogle Scholar
  40. 40.
    Ismaeil MS, Tkachenko I, Gamperl AK, Hickey RF, Cason BA (1999) Mechanisms of isoflurane-induced myocardial preconditioning in rabbits. Anesthesiology 90:812–821PubMedGoogle Scholar
  41. 41.
    Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM (1997) Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77:314–318PubMedPubMedCentralGoogle Scholar
  42. 42.
    Julier K, Silva R da, Garcia C et al. (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327PubMedGoogle Scholar
  43. 43.
    Kawamura S, Yoshida K, Miura T, Mizukami Y, Matsuzaki M (1998) Ischemic preconditioning translocates PKC-delta and -epsilon, which mediate functional protection in isolated rat heart. Am J Physiol 275:H2266–H2271PubMedGoogle Scholar
  44. 44.
    Kendall JB, Russell GN, Scawn NDA, Akrofi M, Cowan CM, Fox MA (2004) A prospective, randomised, single-blind pilot study to determine the effect of anaesthetic technique on troponin T release after off-pump coronary artery surgery. Anaesthesia 59:545–549PubMedGoogle Scholar
  45. 45.
    Klepzig H, Kober G, Matter C et al. (1999) Sulfonylureas and ischaemic preconditioning: a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 20:439–446PubMedGoogle Scholar
  46. 46.
    Kloner RA, Shook T, Przyklenk K et al. (1995) Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning? Circulation 91:37–45PubMedGoogle Scholar
  47. 47.
    Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–H657PubMedGoogle Scholar
  48. 48.
    Kuzuya T, Hoshida S, Yamashita N et al. (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299PubMedGoogle Scholar
  49. 49.
    Laskey WK, Beach D (2003) Frequency and clinical significance of ischemic preconditioning during percutaneous coronary intervention. J Am Coll Cardiol 42:998–1003PubMedGoogle Scholar
  50. 50.
    Laude K, Beauchamp P, Thuillez C, Richard V (2002) Endothelial protective effects of preconditioning. Cardiovasc Res 55:466–473PubMedGoogle Scholar
  51. 51.
    Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R (1997) Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation 95:2500–2507PubMedGoogle Scholar
  52. 52.
    Liang BT, Gross GJ (1999) Direct preconditioning of cardiac myocytes via opioid receptors and KATP channels. Circ Res 84:1396–1400PubMedGoogle Scholar
  53. 53.
    Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568PubMedGoogle Scholar
  54. 54.
    Linden PJ van der, Daper A, Trenchant A, Hert SG de (2003) Cardioprotective effects of volatile anesthetics in cardiac surgery. Anesthesiology 99:516–517Google Scholar
  55. 55.
    Liu R, Ishibe Y, Ueda M (2000) Isoflurane-sevoflurane adminstration before ischemia attenuates ischemia-reperfusion-induced injury in isolated rat lungs. Anesthesiology 92:833–840PubMedGoogle Scholar
  56. 56.
    Loscar M, Conzen P (2004) Volatile Anästhetika. Anaesthesist 53:183–198PubMedGoogle Scholar
  57. 57.
    Ludwig LM, Patel HH, Gross GJ, Kersten JR, Pagel PS, Warltier DC (2003) Morphine enhances pharmacological preconditioning by isoflurane: role of mitochondrial K(ATP) channels and opioid receptors. Anesthesiology 98:705–711PubMedGoogle Scholar
  58. 58.
    Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2004) Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 100:532–539PubMedGoogle Scholar
  59. 59.
    Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272PubMedGoogle Scholar
  60. 60.
    Meissner A, Weber TP, Aken H van, Zbieranek K, Rolf N (2000) Recovery from myocardial stunning is faster with desflurane compared with propofol in chronically instrumented dogs. Anesth Analg 91:1333–1338PubMedGoogle Scholar
  61. 61.
    Miyawaki H, Ashraf M (1997) Ca2+ as a mediator of ischemic preconditioning. Circ Res 80:790–799PubMedGoogle Scholar
  62. 62.
    Mullenheim J, Ebel D, Frassdorf J, Preckel B, Thamer V, Schlack W (2002) Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology 96:934–940PubMedGoogle Scholar
  63. 63.
    Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898PubMedGoogle Scholar
  64. 64.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136PubMedGoogle Scholar
  65. 65.
    Nakamura T, Kashimoto S, Oguchi T, Kumazawa T (1999) Hydroxyl radical formation during inhalation anesthesia in the reperfused working rat heart. Can J Anaesth 46:470–475PubMedGoogle Scholar
  66. 66.
    Ninomiya H, Otani H, Lu K, Uchiyama T, Kido M, Imamura H (2002) Complementary role of extracellular ATP and adenosine in ischemic preconditioning in the rat heart. Am J Physiol Heart Circ Physiol 282:H1810–H1820PubMedGoogle Scholar
  67. 67.
    Novalija E, Varadarajan SG, Camara AK et al. (2002) Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. Am J Physiol Heart Circ Physiol 283:H44–H52PubMedGoogle Scholar
  68. 68.
    Novalija E, Kevin LG, Camara AK, Bosnjak ZJ, Kampine JP, Stowe DF (2003) Reactive oxygen species precede the epsilon isoform of protein kinase C in the anesthetic preconditioning signaling cascade. Anesthesiology 99:421–428PubMedGoogle Scholar
  69. 69.
    O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94:420–432Google Scholar
  70. 70.
    Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F (1995) Prodromal angina limits infarct size: a role for ischemic preconditioning. Circulation 91:291–297PubMedGoogle Scholar
  71. 71.
    Ovize M, Kloner RA, Przyklenk K (1994) Stretch preconditions canine myocardium. Am J Physiol 266:H137–H146PubMedGoogle Scholar
  72. 72.
    Pain T, Yang XM, Critz SD et al. (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466PubMedGoogle Scholar
  73. 73.
    Patel HH, Ludwig LM, Fryer RM, Hsu AK, Warltier DC, Gross GJ (2002) Delta opioid agonists and volatile anesthetics facilitate cardioprotection via potentiation of K(ATP) channel opening. FASEB J 16:1468–1470PubMedGoogle Scholar
  74. 74.
    Penta de Peppo A, Polisca P, Tomai F et al. (1999) Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 68:112–118Google Scholar
  75. 75.
    Pintar T, Collard CD (2003) The systemic inflammatory response to cardiopulmonary bypass. Anesthesiol Clin North America 21:453–464PubMedGoogle Scholar
  76. 76.
    Piriou V, Chiari P, Knezynski S et al. (2000) Prevention of isoflurane-induced preconditioning by 5-hydroxydecanoate and gadolinium: possible involvement of mitochondrial adenosine triphosphate-sensitive potassium and stretch-activated channels. Anesthesiology 93:756–764PubMedGoogle Scholar
  77. 77.
    Piriou V, Chiari P, Gateau-Roesch O et al. (2004) Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology 100:581–588PubMedGoogle Scholar
  78. 78.
    Post H, Heusch G (2002) Ischemic preconditioning. Experimental facts and clinical perspective. Minerva Cardioangiol 50:569–605PubMedGoogle Scholar
  79. 79.
    Pouzet B, Lecharny JB, Dehoux M, Paquin S, Kitakaze M, Mantz J, Menasche P (2002) Is there a place for preconditioning during cardiac operations in humans? Ann Thor Surg 73:843–848Google Scholar
  80. 80.
    Riess ML, Kevin LG, Camara AK, Heisner JS, Stowe DF (2004) Dual exposure to sevoflurane improves anesthetic preconditioning in intact hearts. Anesthesiology 100:569–574PubMedGoogle Scholar
  81. 81.
    Roscoe AK, Christensen JD, Lynch C 3rd (2000) Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels. Anesthesiology 92:1692–1701PubMedGoogle Scholar
  82. 82.
    Schultz JE, Hsu AK, Gross GJ (1996) Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 78:1100–1104PubMedGoogle Scholar
  83. 83.
    Sileri P, Sica G, Gentileschi P et al. (2004) Ischemic preconditioning protects intestine from prolonged ischemia. Transplant Proc 36:283–285PubMedGoogle Scholar
  84. 84.
    Slogoff S, Keats AS (1989) Randomized trial of primary anesthetic agents on outcome of coronary artery bypass operations. Anesthesiology 70:179–188PubMedGoogle Scholar
  85. 85.
    Strasser RH, Braun-Dullaeus R, Walendzik H, Marquetant R (1992) Alpha 1-receptor-independent activation of protein kinase C in acute myocardial ischemia. Mechanisms for sensitization of the adenylyl cyclase system. Circ Res 70:1304–1312PubMedGoogle Scholar
  86. 86.
    Szewczyk A, Wojtczak L (2002) Mitochondria as a pharmacological target. Pharmacol Rev 54:101–127PubMedGoogle Scholar
  87. 87.
    Tahepold P, Valen G, Starkopf J, Kairane C, Zilmer M, Vaage J (2001) Pretreating rats with hyperoxia attenuates ischemia-reperfusion injury of the heart. Life Sci 68:1629–1640Google Scholar
  88. 88.
    Tanaka K, Weihrauch D, Kehl F et al. (2002) Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology 97:1485–1490PubMedGoogle Scholar
  89. 89.
    Tanaka K, Ludwig LM, Kersten JR, Pagel PS, Warltier DC (2004) Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology 100:707–721PubMedGoogle Scholar
  90. 90.
    Tanaka K, Ludwig LM, Krolikowski JG et al. (2004) Isoflurane produces delayed preconditioning against myocardial ischemia and reperfusion injury: role of cyclooxygenase-2. Anesthesiology 100:525–531PubMedGoogle Scholar
  91. 91.
    Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994) Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res 28:980–986PubMedGoogle Scholar
  92. 92.
    Tanguay M, Blaise G, Dumont L, Beique G, Hollmann C (1991) Beneficial effects of volatile anesthetics on decrease in coronary flow and myocardial contractility induced by oxygen-derived free radicals in isolated rabbit hearts. J Cardiovasc Pharmacol 18:863–870PubMedGoogle Scholar
  93. 93.
    Toller WG, Kersten JR, Pagel PS, Hettrick DA, Warltier DC (1999) Sevoflurane reduces myocardial infarct size and decreases the time threshold for ischemic preconditioning in dogs. Anesthesiology 91:1437–1446PubMedGoogle Scholar
  94. 94.
    Toller WG, Gross ER, Kersten JR, Pagel PS, Gross GJ, Warltier DC (2000) Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channels: mechanism of desflurane-induced cardioprotection. Anesthesiology 92:1731–1739PubMedGoogle Scholar
  95. 95.
    Toller WG, Kersten JR, Gross ER, Pagel PS, Warltier DC (2000) Isoflurane preconditions myocardium against infarction via activation of inhibitory guanine nucleotide binding proteins. Anesthesiology 92:1400–1407PubMedGoogle Scholar
  96. 96.
    Tomai F, Crea F, Gaspardone A et al. (1999) Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 33:1863–1869PubMedGoogle Scholar
  97. 97.
    Tomai F, Paulis R de, Penta de Peppo A et al. (1999) Beneficial impact of isoflurane during coronary bypass surgery on troponin I release. G Ital Cardiol 29:1007–1014PubMedGoogle Scholar
  98. 98.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206PubMedGoogle Scholar
  99. 99.
    Tritto I, D’Andrea D, Eramo N et al. (1997) Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80:743–748PubMedGoogle Scholar
  100. 100.
    Vahlhaus C, Schulz R, Post H, Onallah R, Heusch G (1996) No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ Res 79:407–414PubMedGoogle Scholar
  101. 101.
    Wacker J, Pasch T, Schaub MC, Zaugg M (2005) Perioperative Strategien zur Regulierung des Sympathikotonus. Anaesthesist 54:303–318PubMedGoogle Scholar
  102. 102.
    Waldow T, Alexiou K, Witt W, Albrecht S, Wagner F, Knaut M, Matschke K (2005) Protection against acute porcine lung ischemia/reperfusion injury by systemic reconditioning via hind limb ischemia. Transpl Int 18:198–205PubMedGoogle Scholar
  103. 103.
    Wang X, Jarvinen O, Kuukasjarvi P et al. (2004) Isoflurane produces only minor preconditioning in coronary artery bypass grafting. Scand Cardiovasc J 38:287–229PubMedGoogle Scholar
  104. 104.
    Warltier DC, al-Wathiqui MH, Kampine JP, Schmeling WT (1988) Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology 69:552–565PubMedGoogle Scholar
  105. 105.
    Weber NC, Toma O, Wolter JI, Obal D, Mullenheim J, Preckel B, Schlack W (2005) The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol 144:123–132PubMedGoogle Scholar
  106. 106.
    Wu ZK, Iivainen T, Pehkonen E, Laurikka J, Tarkka MR (2002) Ischemic preconditioning suppresses ventricular tachyarrhythmias after myocardial revascularization. Circulation 106:3091–3096PubMedGoogle Scholar
  107. 107.
    Yellon DM, Alkhulaifi AM, Pugsley WB (1993) Preconditioning the human myocardium. Lancet 342:276–277PubMedGoogle Scholar
  108. 108.
    Yvon A, Hanouz JL, Haelewyn B et al. (2003) Mechanisms of sevoflurane-induced myocardial preconditioning in isolated human right atria in vitro. Anesthesiology 99:27–33PubMedGoogle Scholar
  109. 109.
    Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology 97:4–14PubMedGoogle Scholar
  110. 110.
    Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565PubMedGoogle Scholar
  111. 111.
    Ziegenfuss T, Wanner GA, Grass C et al. (1999) Mixed agonistic-antagonistic cytokine response in whole blood from patients undergoing abdominal aortic aneurysm repair. Intensive Care Med 25:279–287PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum des SaarlandesHomburg/Saar
  2. 2.Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum des SaarlandesHomburg/Saar

Personalised recommendations