Advertisement

Der Anaesthesist

, Volume 54, Issue 10, pp 1021–1031 | Cite as

Wirkortäquilibration, Anschlagzeit, „time to peak effect“

Bedeutung pharmakokinetisch-dynamischer Prinzipien für die tägliche klinische Praxis
  • J. Bruhn
  • P. M. SchumacherEmail author
  • T. W. Bouillon
Klinische Pharmakologie

Zusammenfassung

In der anästhesiologischen Pharmakologie spielen im Gegensatz zur internistischen Pharmakologie „Non-steady-state-Phänomene“ eine herausragende Rolle. Ihr Verständnis ist eine Conditio sine qua non für die sichere und effiziente Applikation von anästhesierelevanten Medikamenten. Insbesondere die Verfügbarkeit der „optimierten target controlled infusion“ („optimized TCI“), von TCI-Systemen mit Ansteuerung des Effektkompartiments und dem relativ geringen Dosierungsspielraum bei „conscious sedation“ unter erhaltener Spontanatmung verlangen von Anästhesisten, sich mit dem Konzept des Konzentrationsverlaufes am Wirkort auseinander zu setzen. Der Leser wird in die grundlegende Problematik eingeführt. Anwendungen der Prinzipien bei der Applikation von Muskelrelaxanzien, Propofol mit TCI-Systemen, volatilen Anästhetika und Opiaten werden erläutert.

Schlüsselwörter

Pharmakokinetik Wirkortkompartiment Wirkortäquilibration Anschlagszeit „Target-controlled-infusion- (TCI-)Systeme“ Atemdepression 

Effect compartment equilibration and time-to-peak effect

Importance of a pharmacokinetic-pharmacodynamic principle for the daily clinical practice

Abstract

Contrary to the situation in “classical” clinical pharmacology, non-steady state phenomena play a fundamental role for clinical pharmacology in anesthesia. Their understanding is of tantamount importance for the safe and efficient application of drugs relevant to anesthesia. Concepts like optimised target-controlled infusion (TCI), effect compartment targeting and the small margin of error tolerable during maintained spontaneous ventilation, force the anesthesiologist to acquire a firm understanding of the difference between the concentration time course at the effect side vs. time course of the plasma concentration. The underlying concepts, their application for the rational use of muscle relaxants, propofol with TCI systems, volatile anaesthetics and opioids will be discussed.

Keywords

Pharmacokinetics Effect site compartment Effect compartment equilibration Time-to-peak effect Target-controlled infusion (TCI) systems Respiratory depression 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Billard V, Gambus PL, Chamoun N et al. (1997) A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58CrossRefPubMedGoogle Scholar
  2. 2.
    Bouillon T, Schmidt C, Garstka G et al. (1999) Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of alfentanil. Anesthesiology 91:144–155CrossRefPubMedGoogle Scholar
  3. 3.
    Bouillon T, Bruhn J, Radu-Radulescu L et al. (2003) A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology 99:779–787CrossRefPubMedGoogle Scholar
  4. 4.
    Bouillon T, Garstka G, Stafforst D et al. (2003) Piritramide and alfentanil display similar respiratory depressant potency. Acta Anaesthesiol Scand 47:1231–1241Google Scholar
  5. 5.
    Bouillon T, Bruhn J, Radu-Radulescu L et al. (2004) Mixed-effects modeling of the intrinsic ventilatory depressant potency of propofol in the non-steady state. Anesthesiology 100:240–250CrossRefPubMedGoogle Scholar
  6. 6.
    Bruhn J, Ropcke H, Hoeft A (2000) Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia. Anesthesiology 92:715–726CrossRefPubMedGoogle Scholar
  7. 7.
    Buhrer M, Maitre PO, Crevoisier C et al. (1990) Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin Pharmacol Ther 48:555–567PubMedGoogle Scholar
  8. 8.
    Coetzee JF, Glen JB, Wium CA et al. (1995) Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology 82:1328–1345CrossRefPubMedGoogle Scholar
  9. 9.
    Donati F, Varin F, Ducharme J et al. (1991) Pharmacokinetics and pharmacodynamics of atracurium obtained with arterial and venous blood samples. Clin Pharmacol Ther 49:515–522PubMedGoogle Scholar
  10. 10.
    Doufas AG, Bakhshandeh M, Bjorksten AR et al. (2004) Induction speed is not a determinant of propofol pharmacodynamics. Anesthesiology 101:1112–1121CrossRefPubMedGoogle Scholar
  11. 11.
    Dragne A, Varin F, Plaud B et al. (2002) Rocuronium pharmacokinetic-pharmacodynamic relationship under stable propofol or isoflurane anesthesia. Can J Anaesth 49:353–360PubMedGoogle Scholar
  12. 12.
    Egan TD, Minto CF, Hermann DJ et al. (1996) Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 84:821–833CrossRefPubMedGoogle Scholar
  13. 13.
    Ekman A, Lindholm ML, Lennmarken C et al. (2004) Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand 48:20–26Google Scholar
  14. 14.
    Fechner J, Albrecht S, Ihmsen H et al. (1998) Prädiktivitat und Präzision einer „target-controlled infusion“ (TCI) von Propofol mit dem System „Disoprifusor TCI“. Anaesthesist 47:663–668CrossRefPubMedGoogle Scholar
  15. 15.
    Gepts E, Camu F, Cockshott ID et al. (1987) Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 66:1256–1263PubMedGoogle Scholar
  16. 16.
    Heidegger T, Minto CF, Schnider TW (2004) Moderne Konzepte der Pharmakokinetik intravenöser Anasthetika. Anaesthesist 53:95–110CrossRefPubMedGoogle Scholar
  17. 17.
    Hull CJ, Beem HB van, McLeod K et al. (1978) A pharmacodynamic model for pancuronium. Br J Anaesth 50:1113–1123PubMedGoogle Scholar
  18. 18.
    Ihmsen H, Jeleazcov C, Schuttler J et al. (2004) Präzision von „target-controlled infusion“ (TCI) mit zwei unterschiedlichen Propofolformulierungen. Anaesthesist 53:937–943CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson KB, Egan TD, Layman J et al. (2003) The influence of hemorrhagic shock on etomidate: a pharmacokinetic and pharmacodynamic analysis. Anesth Analg 96:1360–1368, tableCrossRefPubMedGoogle Scholar
  20. 20.
    Kietzmann D, Bouillon T, Hamm C et al. (1997) Pharmacodynamic modelling of the analgesic effects of piritramide in postoperative patients. Acta Anaesthesiol Scand 41:888–894Google Scholar
  21. 21.
    Koh KF, Chen FG (1994) Rapid tracheal intubation with atracurium: the timing principle. Can J Anaesth 41:688–693PubMedGoogle Scholar
  22. 22.
    Kreuer S, Wilhelm W, Grundmann U et al. (2004) Narcotrend index versus bispectral index as electroencephalogram measures of anesthetic drug effect during propofol anesthesia. Anesth Analg 98:692–697, tableCrossRefPubMedGoogle Scholar
  23. 23.
    Laurin J, Donati F, Nekka F et al. (2001) Peripheral link model as an alternative for pharmacokinetic-pharmacodynamic modeling of drugs having a very short elimination half-life. J Pharmacokinet Pharmacodyn 28:7–25Google Scholar
  24. 24.
    Li YH, Xu JH, Yang JJ et al. (2005) Predictive performance of „Diprifusor“ TCI system in patients during upper abdominal surgery under propofol/fentanyl anesthesia. J Zhejiang Univ Sci 6:43–48CrossRefGoogle Scholar
  25. 25.
    Lim TA (2003) A novel method of deriving the effect compartment equilibrium rate constant for propofol. Br J Anaesth 91:730–732CrossRefPubMedGoogle Scholar
  26. 26.
    Maitre PO, Buhrer M, Shafer SL et al. (1990) Estimating the rate of thiopental blood-brain equilibration using pseudo steady state serum concentrations. J Pharmacokinet Biopharm 18:175–187CrossRefPubMedGoogle Scholar
  27. 27.
    Marathe PH, Dwersteg JF, Pavlin EG et al. (1989) Effect of thermal injury on the pharmacokinetics and pharmacodynamics of atracurium in humans. Anesthesiology 70:752–755PubMedGoogle Scholar
  28. 28.
    Marsh B, White M, Morton N et al. (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41–48PubMedGoogle Scholar
  29. 29.
    Minto CF, Schnider TW, Egan TD et al. (1997) Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 86:10–23CrossRefPubMedGoogle Scholar
  30. 30.
    Minto CF, Schnider TW, Gregg KM et al. (2003) Using the time of maximum effect site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology 99:324–333CrossRefPubMedGoogle Scholar
  31. 31.
    Rehberg B, Bouillon T, Zinserling J et al. (1999) Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 91:397–405CrossRefPubMedGoogle Scholar
  32. 32.
    Renz D (2002) Das MEC Konzept: Ein optimiertes Dosierungsverfahren der TCI-Technologie. B. Braun Melsungen AG, MelsungenGoogle Scholar
  33. 33.
    Roy JJ, Donati F, Boismenu D et al. (2002) Concentration-effect relation of succinylcholine chloride during propofol anesthesia. Anesthesiology 97:1082–1092CrossRefPubMedGoogle Scholar
  34. 34.
    Schnider TW, Minto CF, Gambus PL et al. (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182CrossRefPubMedGoogle Scholar
  35. 35.
    Schnider TW, Minto CF, Shafer SL et al. (1999) The influence of age on propofol pharmacodynamics. Anesthesiology 90:1502–1516CrossRefPubMedGoogle Scholar
  36. 36.
    Scott JC, Stanski DR (1987) Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 240:159–166PubMedGoogle Scholar
  37. 37.
    Scott JC, Cooke JE, Stanski DR (1991) Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74:34–42PubMedGoogle Scholar
  38. 38.
    Sebel PS, Lang E, Rampil IJ et al. (1997) A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg 84:891–899CrossRefPubMedGoogle Scholar
  39. 39.
    Sheiner LB, Stanski DR, Vozeh S et al. (1979) Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 25:358–371Google Scholar
  40. 40.
    Sohn YJ, Bencini AF, Scaf AH et al. (1986) Comparative pharmacokinetics and dynamics of vecuronium and pancuronium in anesthetized patients. Anesth Analg 65:233–239PubMedGoogle Scholar
  41. 41.
    Struys MM, Smet T de, Depoorter B et al. (2000) Comparison of plasma compartment versus two methods for effect compartment — Controlled target-controlled infusion for propofol. Anesthesiology 92:399–406CrossRefPubMedGoogle Scholar
  42. 42.
    Vuyk J, Engbers FH, Burm AG et al. (1995) Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets. Anesth Analg 81:1275–1282CrossRefPubMedGoogle Scholar
  43. 43.
    White M, Schenkels MJ, Engbers FH et al. (1999) Effect-site modelling of propofol using auditory evoked potentials. Br J Anaesth 82:333–339PubMedGoogle Scholar
  44. 44.
    Wietasch JKG (2004) Pharmakologische Grundlagen moderner intravenöser Anaesthesieverfahren und ihre Bedeutung für die Steuerung der Narkosetiefe. In: Wilhelm W, Bruhn J, Kreuer S (Hrsg) Überwachung der Narkosetiefe. Grundlagen und medizinische Praxis. Deutscher Ärzteverlag, Köln, S 297–334Google Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikumBonn
  2. 2.Department AnästhesiologieUniversitätsspitalBernSchweiz
  3. 3.Departement AnästhesiologieInselspitalBernSchweiz

Personalised recommendations