Advertisement

Der Anaesthesist

, Volume 52, Issue 9, pp 839–859 | Cite as

Medikamenteninteraktionen für den Anästhesisten

  • A. S. MildeEmail author
  • J. Motsch
Weiterbildung: Zertifizierte Fortbildung

Zusammenfassung

Eines der Grundprinzipien der modernen Anästhesie ist die Kombination unterschiedlicher Pharmaka aus verschiedenen Substanzgruppen. Zusätzlich sehen sich Anästhesisten häufig mit der umfangreichen medikamentösen Dauertherapie chronisch kranker Patienten konfrontiert. Werden zwei oder mehrere Medikamente gleichzeitig appliziert, kann sich der pharmakologische Effekt von der Summe der einzeln verabreichten Substanzen unterscheiden. Das kann erwünscht, aber für den Patienten auch potenziell gefährlich sein. Die Wahrscheinlichkeit einer unerwünschten Arzneimittelwechselwirkung steigt exponentiell mit der Anzahl der verabreichten Medikamente und kann sowohl auf pharmazeutischer, pharmakodynamischer wie pharmakokinetischer Ebene entstehen. Obwohl die Fülle der Interaktionsmöglichkeiten enorm und die Komplexität der Arzneimittelwechselwirkungen schwer greifbar und zu identifizieren sind, gelten ernsthafte Medikamenteninteraktionen in der Anästhesie allgemein als vorhersehbar. Neben der Erkennung der Risikofaktoren wie Leber- und Niereninsuffizienz, ASA-Status sowie metabolische und endokrine Veränderungen des Patienten sind grundlegende Kenntnisse und ein Verständnis der allgemeinen und speziellen Pharmakologie notwendig, um unerwünschte Arzneimittelwechselwirkungen zu verhindern.

Schlüsselwörter

Anästhesie Medikamenteninteraktionen Risikofaktoren Inzidenz Mechanismen Pharmakodynamik Pharmakokinetik 

Abstract

Modern anesthesiology employs the combined administration of several drugs belonging to different pharmacological classes. Additionally, anesthesiologists are facing the challenge of polypharmacy regimens utilized by patients considered for surgical treatment. When drugs are combined, the pharmacological effect may considerably differ from the individually expected properties. This may be beneficial or potentially lead to adverse drug reactions harming the patient. The incidence of drug interaction increases exponentially with the number of drugs administered. Depending on the mechanism involved, drug interactions can be classified as pharmaceutical, pharmacodynamic, or pharmacokinetic. Although there are enormous possibilities for adverse drug reactions and the complexity is hard to identify, prediction of drug interaction is possible. Besides recognizing the general risk factors, fundamental knowledge of basic and clinical pharmacology is important to prevent serious or fatal drug interactions before they occur.

Keywords

Anesthesia Drug interactions Risk factors Incidence Mechanism Pharmacodynamic Pharmacokinetic 

Literatur

  1. 1.
    Ahonen J, Olkkola KT, Salmenpera M et al. (1996) Effect of diltiazem on midazolam and alfentanil disposition in patients undergoing coronary artery bypass grafting. Anesthesiolgy 85:1246–1252Google Scholar
  2. 2.
    Ang-Lee MK, Moss J, Yuan CS (2001) Herbal medicines and perioperative care. JAMA 286:208–216PubMedGoogle Scholar
  3. 3.
    Andersen V, Pedersen N, Larsen NE et al. (2002) Intestinal first pass metabolism of midazolam in liver cirrhosis—effect of grapefruit juice. Br J Clin Pharmacol 54:120–124PubMedGoogle Scholar
  4. 4.
    Bailey DG, Spence M, Spence A et al. (1998) Grapefruit juice-drug interactions. Br J Clin Pharmacol 46:101PubMedGoogle Scholar
  5. 5.
    Baillard C, Gehan G, Reboul-Marty J et al. (2000) Residual curarization in the recovery room after vecuronium. Br J Anaesth 84:394–395PubMedGoogle Scholar
  6. 6.
    Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141PubMedGoogle Scholar
  7. 7.
    Berg H, Viby-Mogensen J, Roed J et al. (1997) Residual neuromuscular block is a risk factor for postoperative pulmonary complications. Acta Anaesthesiol Scand 41:1095–1103PubMedGoogle Scholar
  8. 8.
    Bodner RA, Lynch T, Lewis L et al. (1995) Serotonin syndrome. Neurology 45:219–223PubMedGoogle Scholar
  9. 9.
    Bouillon T, Bruhn J, Radu-Radulescu R et al. (2002) Non–steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 97:1350–1362PubMedGoogle Scholar
  10. 10.
    Bovill JG (1997) Adverse drug interactions in anesthesia. J Clin Anesth 9:3S–13SPubMedGoogle Scholar
  11. 11.
    Bovill JG (2002) Drug interactions. IARS Review Course Lectures, pp 17–21Google Scholar
  12. 12.
    Breidenbach T, Hoffmann MW, Becker T et al. (2000) Drug interaction of St. John's wort with cyclosporine. Lancet 355:1912Google Scholar
  13. 13.
    Cammu G (2001) Interactions of neuromuscular blocking drugs. Acta Anaesth Belg 52:357–363Google Scholar
  14. 14.
    Coriat P, Richer C, Douraki T et al. (1994) Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology 81:299–307PubMedGoogle Scholar
  15. 15.
    Court MH, Duan SX, Hesse LM et al. (2001) Cytochrome p-450 2B6 is responsible of interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94:110–119PubMedGoogle Scholar
  16. 16.
    Davis AW, Heavner JE (2002) Polypharmacy, age and scheduled surgery. J Clin Anesth 14:329–334PubMedGoogle Scholar
  17. 17.
    Dobrev D, Milde AS, Andreas K et al. (1999) The effect of verapamil and diltiazem on N-, P- and Q-Type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 127:576–582PubMedGoogle Scholar
  18. 18.
    Eichler A, Eiden U, Kessler P (2000) Aids und Anästhesie. Anaesthesist 49:1006–1017PubMedGoogle Scholar
  19. 19.
    Erkola O, Rautoma P, Meretoja OA (1996) Mivarurium when preceded by pancuronium becomes a long-acting muscle relaxant. Anesthesiology 84:562–565PubMedGoogle Scholar
  20. 20.
    Eschenhagen T (2000) Overview of drug interactions. Combining drugs correctly! MMW Fortschr Med 142:28–33Google Scholar
  21. 21.
    Favetta P, Degoute CS, Perdrix JP et al. (2002) Propofol metabolites in man following propofol induction and maintenance. Br J Anaesth 88:653–658PubMedGoogle Scholar
  22. 22.
    Feierman DE (2000) The effect of paracetamol (acetaminophen) on fentanyl metabolism in vitro. Acta Anaesth Scan 44:560–563Google Scholar
  23. 23.
    Feierman DE, Lasker JM (1996) Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes: role of CYP3A4. Drug Metab Dispos 24:932–939PubMedGoogle Scholar
  24. 24.
    Fuchs-Buder T, Mencke T (2001) Neuromuskuläres Monitoring. Anaesthesist 50:129–138PubMedGoogle Scholar
  25. 25.
    Goho C (2001) Oral midazolam-grapefruit juice interaction. Pediatr Dent 23:365–366PubMedGoogle Scholar
  26. 26.
    Grandison MK, Boudinot FD (2000) Age related changes in protein binding of drugs: implications for therapy. Clin Pharmacokinet 38:271–290PubMedGoogle Scholar
  27. 27.
    Graudins A, Dowsett RP, Liddle C (2002) The toxicity of antidepressant poisoning: is it changing? A comparative study of cyclic and newer serotonin-specific antidepressants. Emerg Med 14:440–446CrossRefGoogle Scholar
  28. 28.
    Hodges PJ, Kam PC (2002) The perioperative implications of gerbal medicines. Anaesthesia 57:889–899PubMedGoogle Scholar
  29. 29.
    Janicki PK, James FHM, Erskine WAR et al. (1992) Propofol inhibits enzymatic degradation of alfentanil and sufentanil by isolated liver microsomes in vitro. Br J Anaesth 68:311–312PubMedGoogle Scholar
  30. 30.
    Kam PC, Chang GW (1997) Selective serotonin reuptake inhibitors. Pharmacology and clinical implications in anesthesia and critical care medicine. Anaesthesia 52:982–988PubMedGoogle Scholar
  31. 31.
    Kennedy JM, van Rij AM, Spears GF et al. (2000) Polypharmacy in a general surgical unit and consequences of drug withdrawal. Br J Clin Pharmacol 49:353–362PubMedGoogle Scholar
  32. 32.
    Kharasch ED, Hankins DC, Cox K (1999) Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiolgy 90:766–771Google Scholar
  33. 33.
    Kharasch ED, Russell M, Mautz D et al. (1997) The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiolgy 87:36–50Google Scholar
  34. 34.
    Kharasch ED, Thummel KE, Mautz D et al. (1994) Clinical enflurane metabolism by cytochrome P450 2E1. J Clin Pharmacol Ther 55:434–440Google Scholar
  35. 35.
    Kharasch ED, Thummel KE (1993) Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane and methoxyflurane. Anesthesiolgy 79:795–807Google Scholar
  36. 36.
    Kim DW, Joshi GP, White PF et al. (1996) Interactions between mivacurium, rocuronium, and vecuronium during general anesthesia. Anesth Analg 83:818–822PubMedGoogle Scholar
  37. 37.
    Kim KS, Chun YS, Chon SU et al. (1998) Neuromuscular interaction between cisatracurium and mivacurium, atracurium, vecuronium or rocuronium administered in combination. Anesthesiology 53:872–878Google Scholar
  38. 38.
    Kindler CH, Verotta D, Gray AT et al. (2000) Additive inhibition of nicotinic acetylcholine receptors by corticosteroids and the neuromuscular blocking drug vecuronium. Anesthesiology 92:821–832PubMedGoogle Scholar
  39. 39.
    Kisch-Wedel H, Thiel M (2002) Anästhesie bei allergischer Diathese. Anaesthesist 51:868–881CrossRefGoogle Scholar
  40. 40.
    Kitteringham NR, Pirmohamed M, Park BK et al. (1998) The pharmacology of the cytochrome p450 enzyme system. Baillères Clin Anaesthesiol 12:191–211Google Scholar
  41. 41.
    Kotlyar M, Carson SW (1999) Effects of obesity on the cytochrome P450 enzyme system. Int J Clin Pharmacol Ther 37:8–19PubMedGoogle Scholar
  42. 42.
    Lagasse RS (2002) Anesthesia safety: model or myth? Anesthesiolgy 97:1609–1617Google Scholar
  43. 43.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients. JAMA 279:1200–1205PubMedGoogle Scholar
  44. 44.
    Lewis DF (2000) On the recognition of mammalian microsomal cytochrome p450 substrates and their characteristics. Biochem Pharmacol 60:293–306CrossRefPubMedGoogle Scholar
  45. 45.
    Lohr JW, Willsky GR, Acara MA (1998) Renal drug metabolism. Pharmacol Rev 50:107–141PubMedGoogle Scholar
  46. 46.
    McDonald TF, Pelzer S, Trautwein W et al. (1994) Regulation and modulation of calcium channels in cardiac skeletal and smooth muscle cells. Physiol Rev 74:365–507PubMedGoogle Scholar
  47. 47.
    Meistelman C (2001) Update on neuromuscular pharmacology. Curr Opin Anaesthesiol 14:399–404CrossRefGoogle Scholar
  48. 48.
    Merin RG (1987) Calcium channel blocking drugs and anesthetics: is the drug interaction beneficial or detrimental? Anesthesiolgy 66:111–113Google Scholar
  49. 49.
    Mertens MJ, Vuyk J, Olofsen E et al. (2001) Propofol alters the pharmacokinetics of alfentanil in healthy male volunteers. Anesthesiolgy 94:949–957Google Scholar
  50. 50.
    Miller ED, Longnecker DE, Peach MJ (1978) The regulatory function of the renin-angiotensin system during general anesthesia. Anesthesiology 48:399–403PubMedGoogle Scholar
  51. 51.
    Minto CF, Schnider TW, Short TG et al. (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616PubMedGoogle Scholar
  52. 52.
    Nielsen-Kudsk JE, Buhl JS, Johannessen AC (1990) Verapamil-induced inhibition of theophylline elimination in healthy humans. Pharmacol Toxicol 66:101–103PubMedGoogle Scholar
  53. 53.
    Niemann CU, Stabernack C, Serkova N et al. (2002) Cyclosporine can increase isoflurane MAC. Anesth Analg 95:930–934PubMedGoogle Scholar
  54. 54.
    Nishiyama T, Misawa K, Yokoyama T et al. (2002) Effects of combining midazolam and barbiturate on the response to tracheal intubation: changes in autonomic nervous system. J Clin Anesth 14:344–348PubMedGoogle Scholar
  55. 55.
    Olkkola KT, Ahonen J (2001) Drug interactions. Curr Opin Anesth 14:411–416CrossRefGoogle Scholar
  56. 56.
    Orme R, Leslie K, Umranikar A et al. (2002) Esmolol and anesthetic requirement for loss of responsiveness during propofol anesthesia. Anesth Analg 93:112–116Google Scholar
  57. 57.
    Paul M, Fokt RM, Kindler CH et al. (2002) Characterization of the interactions between volatile anesthetics and neuromuscular blockers at the muscle nicotinic acetylcholine receptor. Anesth Analg 95:362–367PubMedGoogle Scholar
  58. 58.
    Papp-Jámbor C, Jaschinksi U, Forst H (2002) Cytochrom-P450-Enzyme und ihre Bedeutung für Medikamenteninteraktionen. Anaesthesist 51:2–15CrossRefGoogle Scholar
  59. 59.
    Power BM, Pinder M, Hackett LP et al. (1995) Fatal serotonin syndrome following a combined overdose of moclobemide, clomipramine and fluoxetine. Anaesth Int Care 23:499–502Google Scholar
  60. 60.
    Rosow CE (1997) Anesthetic drug interaction: an overview. J Clin Anesth 9:27S–32SPubMedGoogle Scholar
  61. 61.
    Roth A, Angster R, Forst H (1999) Begleitmedikation. Anaesthesist 48:267–283PubMedGoogle Scholar
  62. 62.
    Ruschitzka F, Meier PJ, Turina M et al. (2000) Acute heart transplant rejection due to Saint John's wort. Lancet 355:548–549PubMedGoogle Scholar
  63. 63.
    Seagar M, Lëvěque C, Charvin N et al. (1999) Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Phil Trans R Soc Lond B 354:289–297Google Scholar
  64. 64.
    Sekerci S, Tulunay M (1996) Interactions of calcium channel blockers with non-depolarising muscle relaxants in vitro. Anaesthesia 51:140–144PubMedGoogle Scholar
  65. 65.
    Shapiro LE, Shear NH (2002) Drug interactions: proteins, pumps, and p-450s. J Am Acad Dermatol 47:467–484PubMedGoogle Scholar
  66. 66.
    Singh YN, Johnson A, Lulf LA et al. (1996) Study of in vitro and in vitro effects of isradipine in skeletal muscles and interaction with some drugs. Methods Find Exp Clin Pharmacol 18:499–506PubMedGoogle Scholar
  67. 67.
    Spracklin DK, Hankins DC, Fisher JM et al. (1997) Cytochrome P450 2E1 is the principal catalyst of human halothane metabolism in vitro. J Pharmacol Exp Ther 281:400–411PubMedGoogle Scholar
  68. 68.
    Stovner J, Oftedal N, Holmboe J (1975) The inhibition of cholinesterase by pancuronium. Br J Anaesth 47:949–954PubMedGoogle Scholar
  69. 69.
    Szmuk P, Ezri T. Chelly JE et al. (2000) The onset time of rocuronium is slowed by esmolol and accelerated by ephedrine. Anesth Analg 90:1217–1219PubMedGoogle Scholar
  70. 70.
    Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872PubMedGoogle Scholar
  71. 71.
    Vandemergel X, Beukinga I, Neve P (2000) Serotonin syndrome secondary to the use of sertraline and metoclopramide. Rev Med Brux 21:161–163PubMedGoogle Scholar
  72. 72.
    Veering BT, Burm AG, Feyen HM et al. (2002) Pharmacokinetics of bupivacaine during postoperative epidural infusion. Anesthesiolgy 96:1062–1069Google Scholar
  73. 73.
    Vercauteren MP, Meert TF, Hoffmann VH et al. (2001) Drug interactions in the epidural space. Acta Anaesthesiol Belg 52:437–443PubMedGoogle Scholar
  74. 74.
    Vuyk J (1997) Pharmacokinetic and pharmakodynamic interactions between opioids and propofol. J Clin Anesth 9:23S–26SPubMedGoogle Scholar
  75. 75.
    Wali FA (1986) Verapamil intensifies neuromuscular blockade produced by gallamine and pancuronium at the chick neuromuscular junction. Pharmacol Res Commun 18:529–541PubMedGoogle Scholar
  76. 76.
    Wali FA (1986) Interactions of nifedipine and diltiazem with muscle relaxants and reversal of neuromuscular blockade with edrophonium and neostigmine. J Pharmacol 17:244–53PubMedGoogle Scholar
  77. 77.
    Wood M (1991) Pharmacokinetic drug interactions in anaesthetic practice. Clin Pharmacokinet 21:285–307PubMedGoogle Scholar
  78. 78.
    Yatani A, Brown AM (1985) The calcium channel blocker nitrendipin blocks sodium channels in neonatal rat cardiac myocytes. Circ Res 56:868–875PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Klinik für AnaesthesiologieUniversitätsklinikum HeidelbergHeidelberg
  2. 2.Klinik für AnaesthesiologieUniversitätsklinikum HeidelbergHeidelberg

Personalised recommendations